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We consider LP instances in their standard primal and dual forms

(P) min
x∈Rn

cTx (D) max
y∈Rm

bTy

s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0 s ≥ 0.

The barrier method we studied in Lecture 15 can also solve

linear programming problems very efficiently. Crucially, these

algorithms can be designed so that they run in polynomial time:

An upper bound on the number of bit operations can be given

as a polynomial in the bit-length of the input data (A, b, c) of a

LP instance



Definition 1: We say that (P) and (D) satisfy the standard LP

regularity assumption if the following conditions are met:

i) A has linearly independent row vectors, that is, rank(A) = m,

ii) (P) is strictly feasible, that is, there exists a point x ∈ Rn

such that Ax = b and x > 0 componentwise,

iii) (D) is strictly feasible, that is, there exist points (y, s) ∈
Rm × Rn such that ATy + s = c and s > 0 componentwise.



Note that these regularity assumptions are nothing else but the

Slater constraint qualification both for (P) and (D).

The following notation will subsequently be used for the primal,

dual and primal-dual feasible domains:

FP = {x : Ax = b, x ≥ 0},
FD = {(y, s) : ATy + s = c, s ≥ 0},
F◦

P = {x : Ax = b, x > 0},
F◦

D = {(y, s) : ATy + s = c, s > 0},
F◦=F◦

P ×F◦
D.



Perturbations of LP problems: For µ > 0 we consider the

following perturbations of (P) and (D):

(P)µ min
x∈Rn

cTx + µf(x) (D)µ max
y∈Rm

bTy − µf(s)

s.t. Ax = b s.t. ATy + s = c,

x > 0 s > 0.

In both problems

f : R
n
++ → R

x 7→ −
n
∑

j=1

log(xj)

is the logarithmic barrier function.



In Problem Set 6 we studied the duality/optimality theory of

problems (P)µ and (D)µ and found the following result in which

precisely the ”perturbed” KKT conditions of Lecture 15 appear:

Theorem 1: Let (P),(D) satisfy the standard LP regularity

assumption. Then x(µ) ∈ Rn and
(

y(µ), s(µ)
)

∈ Rm × Rn are

optimal for (P)µ and (D)µ respectively if and only if the following

system holds true:

ATy + s = c
Ax = b

XSe = µe
x, s > 0,

(1)

where X = Diag(x), S = Diag(s) and e = [ 1 ... 1 ]T.



The central path: Equations (1) are called the central path

equations.

Theorem 2: Let (P),(D) satisfy the standard LP regularity

assumptions and let µ > 0. Then the central path equations (1)

have a unique solution
(

x(µ), y(µ), s(µ)
)

.

Proof: See lecture notes.



Definition 2: For µ > 0 let us write
(

x(µ), y(µ), s(µ)
)

for the

unique solution of the central path equations (1). Then the set

{x(µ) : µ > 0} is called the primal central path, {(y(µ), s(µ) : µ >

0} is the dual central path, and {(x(µ), y(µ), s(µ)) : µ > 0} is the

primal-dual central path.

Theorem 3: The map

µ 7→
(

x(µ), y(µ), s(µ)
)

is continuously differentiable. Furthermore, there exist x∗ and

(y∗, s∗) which are optimal solutions to (P) and (D) respectively

such that

lim
µ↓0

(

x(µ), y(µ), s(µ)
)

= (x∗, y∗, s∗).



Given an approximate solution (x, y, s) to the central path equa-

tions (1), we find a better approximation by applying Newton’s

method to find a zero of the map






x
y
s






7→







ATy + s − c
Ax − b

XSe − µe






,

that is, we solve the system






0 AT I
A 0 0
S 0 X













∆x
∆y
∆s






= −







ATy + s − c
Ax − b

XSe − µe






(2)

for (∆x,∆y,∆s) and set






x+

y+

s+






:=







x
y
s






+







∆x
∆y
∆s






.



Note that we have neglected the positivity constraints x, s > 0

of the central path equations.

We could enforce these by taking a damped Newton step

α(∆x,∆y,∆s)T as in Lecture 15,

However, a nice feature of our algorithm will be that this is-

sue is dealt with automatically through the notion of centrality

developed below.



We will now describe and analyse an algorithm that iterates over

points that satisfy the constraints

ATy + s = c

Ax = b

x, s > 0

(3)

but not necessarily the equation XSe = µe.

This requires a starting point (x, y, s) that satisfies (3). This

issue can be dealt with via a phase I type auxiliary problem.

Thus, we may simply assume that such a point is available.



Centrality and the Duality Gap: In order to be able to assure

that the iterates of our algorithm stay well inside the domain

x, s > 0, we need a measure of centrality, or of “nearness” to the

central path.

Definition 3: For all

ω = (x, y, s) ∈ F◦ =
{

(x, y, s) : ATy + s = c, Ax = b, x, s > 0
}

we define

µ(ω) :=

∑n
j=1 xjsj

n
.

Recall that LP duality showed that any feasible solution of (P)

yields an upper bound on the optimal solution of (D), and any

feasible solution of (D) yields a lower bound on the optimal

solution of (P).



Definition 4: Let x and (y, s) be primal and dual feasible points.

The duality gap associated with these solutions is defined as

cTx−bTy. Strong LP duality shows that the duality gap becomes

zero at a primal-dual optimal point ω∗ = (x∗, y∗, s∗).

The number µ(ω) is useful in monitoring the progress of an algo-

rithm because it is proportional to the duality gap: if ω = (x, y, s)

is primal-dual feasible, then

cTx − bTy = xT(c − ATy) = xTs = nµ(ω).

It is thus reasonable to fix a number σ ∈ (0,1) and to set µ =

σµ(ω) in the system (2). That is to say, we are aiming to reduce

the duality gap by a constant factor in each iteration.



Another interesting observation is that ω = (x, y, s) ∈ F◦ lies on

the primal-dual central path if and only if XSe = µ(ω)e. This

can be used to define a neighbourhood of the central path:

Definition 5: For θ ∈ (0,1), let

N2(θ) :=
{

ω = (x, y, s) ∈ F◦ : ‖XSe − µ(ω)e‖2 ≤ θµ(ω)
}

.

Note that this notion “distance θ” from the central path is ho-

mogenised by µ(ω): for ω corresponding to a smaller duality gap,

the distance must be proportionally smaller for ω to lie in N2(θ).

That is to say, the neighbourhood narrows down as the central

path approaches the optimal solution ω∗ = (x∗, y∗, s∗) as guar-

anteed by Theorem 3. This feature is necessary to prevent the

algorithm from going off-track.



The Main Motivation of the Algorithm: In each main iter-

ation of our interior-point algorithm we aim at achieving two

separate conflicting goals:

i) we want to reduce the duality gap by a constant factor,

ii) we want to stay near the central path, because we know that

this will lead us to the optimal solution of the problem pair

(P),(D).

Starting from ω = (x, y, s), we aim for the point ωµ that cor-

responds to the barrier parameter value µ = σµ(ω), in order to

reduce the duality gap by a constant factor.



If we start with a point ωk ∈ N2(θ), we want the update ωk+1 =

ωk + ∆ω obtained from the solution of the system






0 AT I
A 0 0
Sk 0 Xk













∆x
∆y
∆s






= −







0
0

XkSke − σµ(ωk)e






(4)

to end up in N2(θ) again, (see figure on next slide) so that we

can apply the same analysis in each iteration.

Note that (4) was obtained from (2) by substituting ωk = (xk, yk, sk)

and using the fact that ωk is primal-dual feasible.
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Unfortunately, if σ is chosen too small and we aim for too radical

a reduction of the duality gap in each iteration, then ωk+1 will

lie outside of N2(θ).

w0

F

N

w*

wm

w1



The choice of σ must therefore be sufficently large but still quan-

tifiably low for the algorithm to be well-defined and efficient.

Thus, there must be a functional dependence between θ and σ.

We will see that a good choice of parameters is obtained as in

the initialisation step S0 of the following primal-dual “short-step”

path-following (SPF) algorithm:



Algorithm (SPF):

S0 Choose θ, δ ∈ (0,1) be such that

θ2 + δ2

23/2(1 − θ)
≤
(

1 − δ√
n

)

θ.

Set σ := 1 − δ√
n

and choose ω0 = (x0, y0, s0) ∈ N2(θ).

S1 For k = 0,1, . . . repeat

solve (4) with ω = ωk for ∆ω := (∆x,∆y,∆s)

compute ωk+1 = ωk + ∆ω

end



Theorem 4: The sequence (ωk)N generated by Algorithm SPF

satisfies ωk ∈ N2(θ) for all k ∈ N, and

µ(ωk) =

(

1 − δ√
n

)k

µ(ω0).

An immediate consequence of Theorem 4 is that it takes only

logarithmically many iterations to reduce the duality gap below

a desired threshold ε > 0:

Corollary 1: After at most k = O
(√

n log n×µ(ω0)
ε

)

iterations

Algorithm SPF produces a point ωk = (xk, yk, sk) ∈ F◦ such that

cTxk − bTyk ≤ ε.



Theorem 4 readily follows from the following result:

Lemma 1: Let ω = (x, y, s) ∈ N2(θ) and let ω+ = (x+, y+, s+) =

ω + ∆ω, where ∆ω = (∆x,∆y,∆s) solves the system






0 AT I
A 0 0
S 0 X













∆x
∆y
∆s






= −







0
0

XSe − σµ(ω)e






(5)

with σ = 1 − δ√
n

and θ, δ chosen as in the initialisation step of

Algorithm SPF. Then ω+ ∈ N2(θ) and µ(ω+) = σµ(ω).



Proof: Let µ+ =
(

1 − δ√
n

)

µ(ω). We claim that the following

three relations hold true:

µ+ =
eTX+S+e

n
, (6)

‖X+S+e − µ+e‖ ≤ θµ+, (7)

x+, s+ > 0. (8)

Clearly, these relations imply that the lemma holds true.

We will establish the validity of Claims (6), (7), and (8) sepa-

rately after introducing the following two technical lemmas:



Lemma 2: ∆xT∆s = 0.

Proof: This follows readily from the first two blocks of equations

in (5).

Lemma 3: Let u, v ∈ Rn be such that uTv ≥ 0 and let U =

Diag(u), V = Diag(v). Then

‖UV e‖ ≤ ‖u + v‖2
23/2

.

Proof: See notes.



Lemma 4: Claim (6) is true.

Proof:

• First note that (5) implies

X+S+e = (X + ∆X)(S + ∆S)e

= XSe + X∆s + S∆x + ∆X∆Se

= µ+e + ∆X∆Se. (9)

• Using Lemma 2 in conjunction with (9), we obtain

eTX+S+e = nµ+ + eT∆X∆Se = nµ+ + ∆xT∆s = nµ+.



Lemma 5: Claim (7) is true.

Proof:

• (9) shows that

‖X+S+e − µ+e‖ = ‖∆X∆Se‖. (10)

• To bound the right hand side of this equation, consider the

matrix D = X
1
2S−1

2. The last block of equations of (5) multiplied

by X−1
2S−1

2 can then be written as

D−1∆x + D∆s = (XS)−
1
2(µ+e − XSe). (11)



Moreover, Lemma 2 shows that (D−1∆x)T(D∆s) = 0, which

makes it possible to apply Lemma 3 to find

‖∆X∆Se‖ = ‖(D−1∆X)(D∆S)e‖
≤ 2−3/2‖D−1∆x + D∆s‖2
(11)
≤ ‖XSe − µ+e‖2

23/2 × min{xjsj}
. (12)

• Because of the assumption ω ∈ N2(θ), we have

‖XSe − µ(ω)e‖ ≤ θµ(ω) (13)

and hence, xjsj ≥ (1 − θ)µ(ω) for all j.



• Substituting this in (12), we find

‖∆X∆Se‖ ≤ (14)

≤ ‖XSe − µ+e‖2
23/2(1 − θ)µ(ω)

=
(

23/2(1 − θ)µ(ω)
)−1 ×

(

‖XSe − µ(ω)e‖2 + ‖(µ(ω) − µ+)e‖2)
(15)

(13)
≤ θ2µ(ω)2 + δ2µ(ω)2

23/2(1 − θ)µ(ω)
=

θ2 + δ2

23/2(1 − θ)
µ(ω) ≤

(

1 − δ√
n

)

θµ(ω)

= θµ+,

where (15) holds because

eTXSe − µ(ω)eTe =
n
∑

j=1

xjsj − nµ(ω) = 0

shows that XSe − µe ⊥ e.



Lemma 6: Claim (8) is true.

Proof: We only treat the case θ ≤ 1/2 which is easier to under-

stand. For the case θ ≤ 1/2 see lecture notes.

• (7) shows that (x+)j(s+)j ≥ (1 − θ)µ+ > 0 for all j. So, if

(x+)j < 0 for some j then (s+)j is negative too, and then

∆xj∆sj ≥ (x+)j(s+)j > (1 − θ)µ+. (16)

On the other hand,

∆xj∆sj ≤ ‖∆X∆Se‖
(7),(10)

≤ θµ+. (17)

• The combination of (16) and (17) yields

(1 − θ)µ+ ≤ ∆xj∆sj < θµ+

which implies the contradiction 2θ > 1 and proves the claim.



Reading Assignment: Lecture-Note 16.



I hope you enjoyed the course,

thanks for listening!


