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Example 1: Linear Programming

A network of gas pipelines is given.
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• An arrow from node i to node j represents a pipe with trans-
port capacity cij in the given direction.

• Transporting one unit of gas along the edge (ij) costs dij.

• The amount of gas produced at node i is pi,

• and the amount of gas consumed is qi.

• We assume that the total amount consumed equals the total
amount of gas produced.

• How to choose the quantities xij of gas shipped along the
edges (ij) so as to minimise costs while satisfying demands?

We set cij = 0 (and dij arbitrary numbers) for all edges (ij) that

do not exist. Doing so, we can assume that the network is a

complete graph.

The problem we have to solve is the following:

min
x

6
∑

i,j=1

dijxij

s.t.
6

∑

k=1

xki + pi =
6

∑

j=1

xij + qi, (i = 1, . . . ,6), (1)

0 ≤ xij ≤ cij, (i, j = 1, . . . ,6). (2)



• This is an example of a linear programming problem, as the

objective function
∑6

i,j=1 dijxij and the constraint functions

(1),(2) are linear functions of the decision variables xij.

• Note that it is not a priori clear that this problem has feasi-

ble solutions. One is therefore interested in algorithms that

not only find optimal LP solutions when these exist but also

detect when a problem instance is infeasible!

• Furthermore, if there is an optimal solution, we are not only

interested in the minimum value of the objective function,

but also in the values of xij that achieve this minimum. Such

an x is called a minimiser of the problem.

Example 2: Quadratic Programming

• An investor considers a fixed time interval and wishes to
decide which fraction of the capital he/she wants to invest
in each of n different given assets.

• The expected return of asset i is µi, assumed known.

• The covariance between assets i and j is σij, assumed known.

• The investor aims at a total return of at least b.

• Subject to this constraint, how to minimise the variance of
the overall portfolio (notion of risk)?

This problem can be modelled as

min
x∈Rn

n
∑

i=1

n
∑

j=1

σijxixj

s.t.
n

∑

i=1

µixi ≥ b,

n
∑

i=1

xi = 1,

xi ≥ 0 (i = 1, . . . , n).

The constraint
∑n

i=1 xi = 1 expresses the requirement that 100%

of the initial capital has to be invested.

Example 3: Semidefinite Programming

• In optimal control, variables y1, . . . , ym have to be chosen so

as to design a system that is driven by the linear ODE

u̇ = M(y)u,

where M(y) =
∑m

i=1 yiAi + A0 is an affine combination of

given symmetric matrices Ai (i = 0, . . . , m).

• To stabilise the system, one would like to choose y so as to

minimise the largest eigenvalue of M(y).



Note that λ1(M) ≤ η if and only if η I−M has only non-negative

eigenvalues.

This is equivalent to η I−M being positive semidefinite, denoted

by η I−M � 0.

The problem we need to solve is thus the following,

max
η,y

− η

s.t. η I−A0 −
m
∑

i=1

yiAi � 0.

Example 4: Polynomial Programming

• An engineer designs a system determined by two design vari-

ables x and y which are dependent on each other via the

relation xy = 1.

• The energy consumed by the system is given by E(x, y) =

x2 + y2 − 4.

• The physical properties of materials used impose the con-

straints x ∈ [0.5,3].

• How to design a system that consumes the smallest amount

of energy among all admissible systems?

This problem can be formulated as

(P) min
x,y

x2 + y2 − 4

s.t. x − 0.5 ≥ 0,

− x + 3 ≥ 0,

xy − 1 = 0.

The General Problem:

More generally, a continuous programming problem concerns the

minimisation (or maximisation) of a continuous objective func-

tion f under constraints defined by continuous functions gi, hj:

(P) min
x∈Rn

f(x)

s.t. gi(x) ≥ 0 (i = 1, . . . , p)

hj(x) = 0 (j = 1, . . . , q).



• Typically we will assume f, gi, hj ∈ C2.

• gi(x) ≥ 0 are called inequality constraints.

• hj(x) = 0 are called equality constraints.

• Constraints of the form xi ∈ Z (integrality constraints) add

a whole other layer of difficulty we will not consider in this

course (see Section B course Integer Programming).

What are key properties of iterative algorithms?

• Correct termination: does the algorithm converge to a min-

imiser? (→ to recognise optima, need to characterise them

mathematically, i.e., develop optimality conditions).

• Low complexity:

i. low total number of iterations (→ need a notion of con-

vergence rate),

ii. low number of computer operations per iteration (→ often

leads to a trade-off with i.).

• Reliability: how sensitive is the algorithm to small changes

in input, how is it affected by round-off?

Some Terminology:

• x ∈ Rn is called feasible solution for (P) if it satisfies all the

constraints, that is, if

gi(x) ≥ 0 (i = 1, . . . , p),

hj(x) = 0 (j = 1, . . . , q).

• The set of feasible solutions is denoted by F, also called the

feasible set. Hence, (P) can be formulated as

min{f(x) : x ∈ F}.

• x ∈ Rn is strictly feasible if

gi(x) > 0 (i = 1, . . . , p),

hj(x) = 0 (j = 1, . . . , q).

• The set of strictly feasible solutions is denoted by F◦. This

is the relative interior of F.



• x ∈ F is a local minimiser of (P) if there exists ε > 0 such

that

f(x∗) ≤ f(x) ∀x ∈ F ∩ Bε(x
∗).

• x∗ ∈ F is a global minimiser of (P) if

f(x∗) ≤ f(x) ∀x ∈ F .

Example 5: Local versus global optimisation

The problem

(P ) min
x∈R

f(x) = x3 + 9x2

s.t. − 10 ≤ x ≤ 2

has a local minimiser at x = 0, and a global minimiser at x∗ =

−10.
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Q-linear convergence:

• A sequence (xk)N → x∗ ∈ Rn converges Q-linearly if there

exists ρ ∈ (0,1) (the convergence factor) and k0 ∈ N such

that

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖ ∀ k ≥ k0.

• Practical significance: xk approximates x∗ to O(− log10 ‖xk −

x∗‖) correct digits. Therefore, O(−log10ρ) additional correct

digits appear per iteration:

− log10 ‖xk+1 − x∗‖ −
(

− log10 ‖xk − x∗‖
)

≥ − log10
‖xk+1 − x∗‖

‖xk − x∗‖
' − log ρ.

Example 6:

Let z ∈ (0,1) be fixed and consider the sequence (xk)N of k-th

partial geometric series

xk =
k

∑

n=0

zn.

Then (xk)N converges to x∗ = 1
1−z

∈ R1 Q-linearly with ρ = z:

for all k,

|xk+1 − x∗|

|xk − x∗|
=

∑∞
n=k+2 zn

∑∞
m=k+1 zm

= z < 1.



Q-superlinear convergence:

• A sequence (xk)N → x∗ ∈ Rn converges Q-superlinearly if

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖
= 0.

• Faster than linear for all ρ.

• Practical significance: asymptotically, the number of addi-

tional correct digits per iteration becomes larger than any

fixed number.

Q-convergence of rate r > 1:

• A sequence (xk)N → x∗ ∈ Rn converges at the Q-rate r > 1

if there exists k0 such that

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖r ∀ k ≥ k0.

• Practical significance: the number of additional correct digits

is approximately multiplied by r in each iteration:

− log10 ‖xk+1 − x∗‖ ' r
(

− log10 ‖xk − x∗‖
)

.

Reading Assignment: Read up on convexity on pages 6–8 of

Lecture-Note 1, which can be downloaded from the course web

page.


