Introduction and Preliminaries

Lecture 1, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Example 1: Linear Programming

A network of gas pipelines is given.

- An arrow from node i to node j represents a pipe with transport capacity c_{ij} in the given direction.
- Transporting one unit of gas along the edge (ij) costs d_{ij} .
- The amount of gas produced at node i is p_i ,
- and the amount of gas consumed is q_i .
- We assume that the total amount consumed equals the total amount of gas produced.
- How to choose the quantities x_{ij} of gas shipped along the edges (ij) so as to minimise costs while satisfying demands?

We set $c_{ij} = 0$ (and d_{ij} arbitrary numbers) for all edges (*ij*) that do not exist. Doing so, we can assume that the network is a complete graph.

The problem we have to solve is the following:

$$\min_{x} \sum_{i,j=1}^{6} d_{ij} x_{ij}$$
s.t.
$$\sum_{k=1}^{6} x_{ki} + p_{i} = \sum_{j=1}^{6} x_{ij} + q_{i}, \quad (i = 1, ..., 6), \quad (1)$$

$$0 \le x_{ij} \le c_{ij}, \quad (i, j = 1, ..., 6). \quad (2)$$

- This is an example of a *linear programming* problem, as the objective function $\sum_{i,j=1}^{6} d_{ij}x_{ij}$ and the constraint functions (1),(2) are linear functions of the decision variables x_{ij} .
- Note that it is not a priori clear that this problem has feasible solutions. One is therefore interested in algorithms that not only find optimal LP solutions when these exist but also detect when a problem instance is infeasible!
- Furthermore, if there is an optimal solution, we are not only interested in the minimum value of the objective function, but also in the values of x_{ij} that achieve this minimum. Such an x is called a *minimiser* of the problem.

Example 2: Quadratic Programming

- An investor considers a fixed time interval and wishes to decide which fraction of the capital he/she wants to invest in each of n different given assets.
- The expected return of asset i is μ_i , assumed known.
- The covariance between assets i and j is σ_{ij} , assumed known.
- The investor aims at a total return of at least b.
- Subject to this constraint, how to minimise the variance of the overall portfolio (notion of risk)?

This problem can be modelled as

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^n \sum_{j=1}^n \sigma_{ij} x_i x_j$$

s.t.
$$\sum_{\substack{i=1\\n}}^n \mu_i x_i \ge b,$$
$$\sum_{\substack{i=1\\n}}^n x_i = 1,$$
$$x_i \ge 0 \quad (i = 1, \dots, n).$$

The constraint $\sum_{i=1}^{n} x_i = 1$ expresses the requirement that 100% of the initial capital has to be invested.

Example 3: Semidefinite Programming

• In optimal control, variables y_1, \ldots, y_m have to be chosen so as to design a system that is driven by the linear ODE

$$\dot{u} = M(y)u,$$

where $M(y) = \sum_{i=1}^{m} y_i A_i + A_0$ is an affine combination of given symmetric matrices A_i (i = 0, ..., m).

• To stabilise the system, one would like to choose y so as to minimise the largest eigenvalue of M(y).

Note that $\lambda_1(M) \leq \eta$ if and only if $\eta I - M$ has only non-negative eigenvalues.

This is equivalent to $\eta I - M$ being positive semidefinite, denoted by $\eta I - M \succeq 0$.

The problem we need to solve is thus the following,

$$\max_{\eta,y} - \eta$$

s.t. $\eta \mathbf{I} - A_0 - \sum_{i=1}^m y_i A_i \succeq 0.$

Example 4: Polynomial Programming

- An engineer designs a system determined by two design variables x and y which are dependent on each other via the relation xy = 1.
- The energy consumed by the system is given by $E(x,y) = x^2 + y^2 4$.
- The physical properties of materials used impose the constraints $x \in [0.5, 3]$.
- How to design a system that consumes the smallest amount of energy among all admissible systems?

This problem can be formulated as

(P)
$$\min_{x,y} x^2 + y^2 - 4$$

s.t. $x - 0.5 \ge 0$,
 $-x + 3 \ge 0$,
 $xy - 1 = 0$.

The General Problem:

More generally, a continuous programming problem concerns the minimisation (or maximisation) of a continuous objective function f under constraints defined by continuous functions g_i , h_j :

(P)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $g_i(x) \ge 0$ $(i = 1, ..., p)$
 $h_j(x) = 0$ $(j = 1, ..., q).$

- Typically we will assume $f, g_i, h_j \in C^2$.
- $g_i(x) \ge 0$ are called *inequality constraints*.
- $h_j(x) = 0$ are called *equality constraints*.
- Constraints of the form $x_i \in \mathbb{Z}$ (integrality constraints) add a whole other layer of difficulty we will not consider in this course (see Section B course Integer Programming).

What are key properties of iterative algorithms?

- Correct termination: does the algorithm converge to a minimiser? (→ to recognise optima, need to characterise them mathematically, i.e., develop optimality conditions).
- Low complexity:
 - i. low total number of iterations (\rightarrow need a notion of *convergence rate*),

ii. low number of computer operations *per* iteration (\rightarrow often leads to a trade-off with i.).

• Reliability: how sensitive is the algorithm to small changes in input, how is it affected by round-off?

Some Terminology:

• $x \in \mathbb{R}^n$ is called *feasible solution* for (P) if it satisfies all the constraints, that is, if

$$g_i(x) \ge 0$$
 $(i = 1, ..., p),$
 $h_j(x) = 0$ $(j = 1, ..., q).$

• The set of feasible solutions is denoted by \mathcal{F} , also called the feasible set. Hence, (P) can be formulated as

 $\min\{f(x): x \in \mathcal{F}\}.$

• $x \in \mathbb{R}^n$ is *strictly* feasible if

$$g_i(x) > 0$$
 $(i = 1, ..., p),$
 $h_j(x) = 0$ $(j = 1, ..., q).$

• The set of strictly feasible solutions is denoted by \mathcal{F}° . This is the relative interior of \mathcal{F} .

• $x \in \mathcal{F}$ is a *local minimiser* of (P) if there exists $\varepsilon > 0$ such that

$$f(x^*) \leq f(x) \quad \forall x \in \mathcal{F} \cap B_{\varepsilon}(x^*).$$

• $x^* \in \mathcal{F}$ is a global minimiser of (P) if

 $f(x^*) \le f(x) \quad \forall x \in \mathcal{F}.$

Example 5: Local versus global optimisation

The problem

(P)
$$\min_{x \in \mathbb{R}} f(x) = x^3 + 9x^2$$

s.t. $-10 \le x \le 2$

has a local minimiser at x = 0, and a global minimiser at $x^* = -10$.

Q-linear convergence:

• A sequence $(x_k)_{\mathbb{N}} \to x^* \in \mathbb{R}^n$ converges Q-linearly if there exists $\rho \in (0, 1)$ (the *convergence factor*) and $k_0 \in \mathbb{N}$ such that

$$||x_{k+1} - x^*|| \le \rho ||x_k - x^*|| \quad \forall k \ge k_0.$$

• Practical significance: x_k approximates x^* to $O(-\log_{10} ||x_k - x^*||)$ correct digits. Therefore, $O(-\log_{10}\rho)$ additional correct digits appear per iteration:

$$-\log_{10} \|x_{k+1} - x^*\| - \left(-\log_{10} \|x_k - x^*\| \right) \\ \ge -\log_{10} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \simeq -\log\rho.$$

Example 6:

Let $z \in (0,1)$ be fixed and consider the sequence $(x_k)_{\mathbb{N}}$ of k-th partial geometric series

$$x_k = \sum_{n=0}^k z^n.$$

Then $(x_k)_{\mathbb{N}}$ converges to $x^* = \frac{1}{1-z} \in \mathbb{R}^1$ Q-linearly with $\rho = z$: for all k,

$$\frac{|x_{k+1} - x^*|}{|x_k - x^*|} = \frac{\sum_{m=k+2}^{\infty} z^n}{\sum_{m=k+1}^{\infty} z^m} = z < 1.$$

Q-superlinear convergence:

• A sequence $(x_k)_{\mathbb{N}} o x^* \in \mathbb{R}^n$ converges Q-superlinearly if

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0.$$

- Faster than linear for all ρ .
- Practical significance: asymptotically, the number of additional correct digits per iteration becomes larger than any fixed number.

Q-convergence of rate r > 1:

• A sequence $(x_k)_{\mathbb{N}} \to x^* \in \mathbb{R}^n$ converges at the Q-rate r > 1if there exists k_0 such that

$$||x_{k+1} - x^*|| \le ||x_k - x^*||^r \quad \forall k \ge k_0.$$

• Practical significance: the number of additional correct digits is approximately multiplied by r in each iteration:

$$-\log_{10} \|x_{k+1} - x^*\| \simeq r \Big(-\log_{10} \|x_k - x^*\| \Big).$$

Reading Assignment: Read up on convexity on pages 6–8 of Lecture-Note 1, which can be downloaded from the course web page.