Introduction and Preliminaries

Lecture 1, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Example 1: Linear Programming

A network of gas pipelines is given.

- An arrow from node i to node j represents a pipe with transport capacity $c_{i j}$ in the given direction.
- Transporting one unit of gas along the edge (ij) costs $d_{i j}$.
- The amount of gas produced at node i is p_{i},
- and the amount of gas consumed is q_{i}.
- We assume that the total amount consumed equals the total amount of gas produced.
- How to choose the quantities $x_{i j}$ of gas shipped along the edges ($i j$) so as to minimise costs while satisfying demands?

We set $c_{i j}=0$ (and $d_{i j}$ arbitrary numbers) for all edges ($i j$) that do not exist. Doing so, we can assume that the network is a complete graph.

The problem we have to solve is the following:

$$
\begin{array}{ll}
\min _{x} & \sum_{i, j=1}^{6} d_{i j} x_{i j} \\
\text { s.t. } & \sum_{k=1}^{6} x_{k i}+p_{i}=\sum_{j=1}^{6} x_{i j}+q_{i}, \quad(i=1, \ldots, 6), \\
& 0 \leq x_{i j} \leq c_{i j}, \quad(i, j=1, \ldots, 6) \tag{2}
\end{array}
$$

- This is an example of a linear programming problem, as the objective function $\sum_{i, j=1}^{6} d_{i j} x_{i j}$ and the constraint functions $(1),(2)$ are linear functions of the decision variables $x_{i j}$.
- Note that it is not a priori clear that this problem has feasible solutions. One is therefore interested in algorithms that not only find optimal LP solutions when these exist but also detect when a problem instance is infeasible!
- Furthermore, if there is an optimal solution, we are not only interested in the minimum value of the objective function, but also in the values of $x_{i j}$ that achieve this minimum. Such an x is called a minimiser of the problem.

Example 2: Quadratic Programming

- An investor considers a fixed time interval and wishes to decide which fraction of the capital he/she wants to invest in each of n different given assets.
- The expected return of asset i is μ_{i}, assumed known.
- The covariance between assets i and j is $\sigma_{i j}$, assumed known.
- The investor aims at a total return of at least b.
- Subject to this constraint, how to minimise the variance of the overall portfolio (notion of risk)?

This problem can be modelled as

$$
\begin{array}{ll}
\qquad \min _{x \in \mathbb{R}^{n}} & \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i j} x_{i} x_{j} \\
\text { s.t. } & \sum_{i=1}^{n} \mu_{i} x_{i} \geq b \\
& \sum_{i=1}^{n} x_{i}=1 \\
& x_{i} \geq 0 \quad(i=1, \ldots, n) .
\end{array}
$$

The constraint $\sum_{i=1}^{n} x_{i}=1$ expresses the requirement that 100% of the initial capital has to be invested.

Example 3: Semidefinite Programming

- In optimal control, variables y_{1}, \ldots, y_{m} have to be chosen so as to design a system that is driven by the linear ODE

$$
\dot{u}=M(y) u
$$

where $M(y)=\sum_{i=1}^{m} y_{i} A_{i}+A_{0}$ is an affine combination of given symmetric matrices $A_{i}(i=0, \ldots, m)$.

- To stabilise the system, one would like to choose y so as to minimise the largest eigenvalue of $M(y)$.

Note that $\lambda_{1}(M) \leq \eta$ if and only if $\eta \mathrm{I}-M$ has only non-negative eigenvalues.

This is equivalent to $\eta \mathrm{I}-M$ being positive semidefinite, denoted by $\eta \mathrm{I}-M \succeq 0$.

The problem we need to solve is thus the following,

$$
\begin{aligned}
& \max _{\eta, y}-\eta \\
& \text { s.t. } \quad \eta \mathrm{I}-A_{0}-\sum_{i=1}^{m} y_{i} A_{i} \succeq 0 .
\end{aligned}
$$

Example 4: Polynomial Programming

- An engineer designs a system determined by two design variables x and y which are dependent on each other via the relation $x y=1$.
- The energy consumed by the system is given by $E(x, y)=$ $x^{2}+y^{2}-4$.
- The physical properties of materials used impose the constraints $x \in[0.5,3]$.
- How to design a system that consumes the smallest amount of energy among all admissible systems?

This problem can be formulated as

$$
\begin{aligned}
& \quad \min _{x, y} x^{2}+y^{2}-4 \\
& \text { s.t. } \quad x-0.5 \geq 0 \\
& \\
& \quad-x+3 \geq 0 \\
& x y-1=0
\end{aligned}
$$

The General Problem:

More generally, a continuous programming problem concerns the minimisation (or maximisation) of a continuous objective function f under constraints defined by continuous functions g_{i}, h_{j} :

$$
\begin{array}{ll}
\text { (P) } \quad \min _{x \in \mathbb{R}^{n}} f(x) \\
& \\
& \\
& h_{j}(x)=0 \quad(j=1, \ldots, q)
\end{array}
$$

- Typically we will assume $f, g_{i}, h_{j} \in C^{2}$.
- $g_{i}(x) \geq 0$ are called inequality constraints.
- $h_{j}(x)=0$ are called equality constraints.
- Constraints of the form $x_{i} \in \mathbb{Z}$ (integrality constraints) add a whole other layer of difficulty we will not consider in this course (see Section B course Integer Programming).

What are key properties of iterative algorithms?

- Correct termination: does the algorithm converge to a minimiser? (\rightarrow to recognise optima, need to characterise them mathematically, i.e., develop optimality conditions).
- Low complexity:
i. low total number of iterations (\rightarrow need a notion of convergence rate),
ii. Iow number of computer operations per iteration (\rightarrow often leads to a trade-off with i.).
- Reliability: how sensitive is the algorithm to small changes in input, how is it affected by round-off?

Some Terminology:

- $x \in \mathbb{R}^{n}$ is called feasible solution for (P) if it satisfies all the constraints, that is, if

$$
\begin{gathered}
g_{i}(x) \geq 0 \quad(i=1, \ldots, p) \\
h_{j}(x)=0 \quad(j=1, \ldots, q)
\end{gathered}
$$

- The set of feasible solutions is denoted by \mathcal{F}, also called the feasible set. Hence, (P) can be formulated as

$$
\min \{f(x): x \in \mathcal{F}\}
$$

- $x \in \mathbb{R}^{n}$ is strictly feasible if

$$
\begin{gathered}
g_{i}(x)>0 \\
h_{j}(x)=0 \quad(i=1, \ldots, p) \\
(j=1, \ldots, q)
\end{gathered}
$$

- The set of strictly feasible solutions is denoted by \mathcal{F}°. This is the relative interior of \mathcal{F}.
- $x \in \mathcal{F}$ is a local minimiser of (P) if there exists $\varepsilon>0$ such that

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{F} \cap B_{\varepsilon}\left(x^{*}\right) .
$$

- $x^{*} \in \mathcal{F}$ is a global minimiser of (P) if

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{F} .
$$

Example 5: Local versus global optimisation

The problem

s.t. $\quad-10 \leq x \leq 2$
has a local minimiser at $x=0$, and a global minimiser at $x^{*}=$ -10 .

Q-linear convergence:

- A sequence $\left(x_{k}\right)_{\mathbb{N}} \rightarrow x^{*} \in \mathbb{R}^{n}$ converges Q -linearly if there exists $\rho \in(0,1)$ (the convergence factor) and $k_{0} \in \mathbb{N}$ such that

$$
\left\|x_{k+1}-x^{*}\right\| \leq \rho\left\|x_{k}-x^{*}\right\| \quad \forall k \geq k_{0} .
$$

- Practical significance: x_{k} approximates x^{*} to $O\left(-\log _{10} \| x_{k}-\right.$ $\left.x^{*} \|\right)$ correct digits. Therefore, $O\left(-\log _{10} \rho\right)$ additional correct digits appear per iteration:

$$
\begin{aligned}
& -\log _{10}\left\|x_{k+1}-x^{*}\right\|-\left(-\log _{10}\left\|x_{k}-x^{*}\right\|\right) \\
& \quad \geq-\log _{10} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|} \simeq-\log \rho .
\end{aligned}
$$

Example 6:

Let $z \in(0,1)$ be fixed and consider the sequence $\left(x_{k}\right)_{\mathbb{N}}$ of k-th partial geometric series

$$
x_{k}=\sum_{n=0}^{k} z^{n}
$$

Then $\left(x_{k}\right)_{\mathbb{N}}$ converges to $x^{*}=\frac{1}{1-z} \in \mathbb{R}^{1} \mathrm{Q}$-linearly with $\rho=z$: for all k,

$$
\frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|}=\frac{\sum_{n=k+2}^{\infty} z^{n}}{\sum_{m=k+1}^{\infty} z^{m}}=z<1 .
$$

Q-superlinear convergence:

- A sequence $\left(x_{k}\right)_{\mathbb{N}} \rightarrow x^{*} \in \mathbb{R}^{n}$ converges Q -superlinearly if

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=0
$$

- Faster than linear for all ρ.
- Practical significance: asymptotically, the number of additional correct digits per iteration becomes larger than any fixed number.

Q-convergence of rate $r>1$:

- A sequence $\left(x_{k}\right)_{\mathbb{N}} \rightarrow x^{*} \in \mathbb{R}^{n}$ converges at the Q -rate $r>1$ if there exists k_{0} such that

$$
\left\|x_{k+1}-x^{*}\right\| \leq\left\|x_{k}-x^{*}\right\|^{r} \quad \forall k \geq k_{0} .
$$

- Practical significance: the number of additional correct digits is approximately multiplied by r in each iteration:

$$
-\log _{10}\left\|x_{k+1}-x^{*}\right\| \simeq r\left(-\log _{10}\left\|x_{k}-x^{*}\right\|\right)
$$

Reading Assignment: Read up on convexity on pages 6-8 of Lecture-Note 1, which can be downloaded from the course web page.

