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Example 1: Linear Programming

A network of gas pipelines is given.




An arrow from node ¢ to node j represents a pipe with trans-
port capacity Cij in the given direction.

Transporting one unit of gas along the edge (ij) costs d;;.
The amount of gas produced at node z is p;,
and the amount of gas consumed is g;.

We assume that the total amount consumed equals the total
amount of gas produced.

How to choose the quantities T of gas shipped along the
edges (i7j) so as to minimise costs while satisfying demands?



We set ¢;; = 0 (and d;; arbitrary numbers) for all edges (ij) that
do not exist. Doing so, we can assume that the network is a
complete graph.

The problem we have to solve is the following:
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e This is an example of a linear programming problem, as the
objective function Z?jzl d;;jr;; and the constraint functions
(1),(2) are linear functions of the decision variables x;;.

e Note that it is not a priori clear that this problem has feasi-
ble solutions. One is therefore interested in algorithms that
not only find optimal LP solutions when these exist but also
detect when a problem instance is infeasiblel

e Furthermore, if there is an optimal solution, we are not only
interested in the minimum value of the objective function,
but also in the values of z;; that achieve this minimum. Such
an x is called a minimiser of the problem.



Example 2: Quadratic Programming

e An investor considers a fixed time interval and wishes to
decide which fraction of the capital he/she wants to invest
in each of n different given assets.

e [ he expected return of asset ¢ is u;, assumed known.
e T he covariance between assets: and j is Tijr assumed known.
e [ he investor aims at a total return of at least b.

e Subject to this constraint, how to minimise the variance of
the overall portfolio (notion of risk)?



T his problem can be modelled as
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T he constraint Z?’:l x; = 1 expresses the requirement that 100%
of the initial capital has to be invested.



Example 3: Semidefinite Programming

e In optimal control, variables yq,...,ym have to be chosen so
as to design a system that is driven by the linear ODE

where M(y) = >, y;A; + Ag is an affine combination of
given symmetric matrices A; (i =0,...,m).

e [0 stabilise the system, one would like to choose y so as to
minimise the largest eigenvalue of M (y).



Note that A\ (M) < ¢ if and only if nI—M has only non-negative
eigenvalues.

This is equivalent to nI —M being positive semidefinite, denoted
by nI—M > 0.

The problem we need to solve is thus the following,
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Example 4: Polynomial Programming

e An engineer designs a system determined by two design vari-
ables x and y which are dependent on each other via the
relation zy = 1.

e The energy consumed by the system is given by E(x,y) =
2 + y2 — 4.

e [ he physical properties of materials used impose the con-
straints x € [0.5, 3].

e How to design a system that consumes the smallest amount
of energy among all admissible systems?



This problem can be formulated as
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The General Problem:

More generally, a continuous programming problem concerns the
minimisation (or maximisation) of a continuous objective func-
tion f under constraints defined by continuous functions g;, hj:

(P) min f(x)
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s.t. gi(x) >0 (G=1,...,p)

h](a;):O (j:].,...,q).



Typically we will assume f, g;, h; € C2.
g;(x) > 0 are called inequality constraints.
h;j(x) = 0 are called equality constraints.

Constraints of the form z; € Z (integrality constraints) add
a whole other layer of difficulty we will not consider in this
course (see Section B course Integer Programming).



What are key properties of iterative algorithms?

e Correct termination: does the algorithm converge to a min-
imiser? (— to recognise optima, need to characterise them
mathematically, i.e., develop optimality conditions).

e Low complexity:
i. low total number of iterations (— need a notion of con-
vergence rate),
ii. low number of computer operations per iteration (— often
leads to a trade-off with i.).

e Reliability: how sensitive is the algorithm to small changes
in input, how is it affected by round-off?



Some Terminology:

e x ¢ R" is called feasible solution for (P) if it satisfies all the
constraints, that is, if

gz(iC) >0 (Z: 17"'7p)7
hi(z)=0 (G=1,...,09)

e [ he set of feasible solutions is denoted by F, also called the
feasible set. Hence, (P) can be formulated as

min{f(x) : © € F}.



e r € R" is strictly feasible if

gi(x) >0 (i=1,...,p),
hi(x)=0 (=1,...,q).

e T he set of strictly feasible solutions is denoted by F°. This
IS the relative interior of F.



e x ¢ F is a local minimiser of (P) if there exists € > 0 such
that

f(z*) < f(z) Vazxe&Fn B:(z).

e z* € F is a global minimiser of (P) if

fl@®) < f(z) VzeF.



Example 5. Local versus global optimisation

The problem
(P) min f(z) = z> + 927
reR

st. —10<x<?2

has a local minimiser at x = 0, and a global minimiser at z* =
—10.




Q-linear convergence:

e A sequence (zp)y — z* € R™ converges Q-linearly if there
exists p € (0,1) (the convergence factor) and kg € N such
that

|zrt1 — || < pllaeg — 2™ VEk > ko.

e Practical significance: zj; approximates z* to O(— 10919 ||zf —
x*||) correct digits. Therefore, O(—logigp) additional correct
digits appear per iteration:
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Example 6:

Let z € (0,1) be fixed and consider the sequence (xj)y Of k-th
partial geometric series
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Then (z;)ny converges to z* = 1lz c Rl Q-linearly with p = z:

for all k,
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Q-superlinear convergence:

e A sequence (xp)y — =¥ € R™ converges Q-superlinearly if

. *
T L Ml
k—oo ||z — x|

e Faster than linear for all p.

e Practical significance: asymptotically, the number of addi-
tional correct digits per iteration becomes larger than any

fixed number.



Q-convergence of rate r» > 1:

e A sequence (xp)ny — ¥ € R™ converges at the Q-rate r > 1
if there exists kg such that

|zpy1 — ™| < |log —2™||" VE > ko.

e Practical significance: the number of additional correct digits
IS approximately multiplied by r in each iteration:

—10910 [[zp41 — 2| ~ r(—l0g10 [lox — =*|]).



Reading Assignment: Read up on convexity on pages 6—8 of
Lecture-Note 1, which can be downloaded from the course web

page.



