
The Descent Method and Line Searches

Lecture 2, Continuous Optimisation

Oxford University Computing Laboratory, HT 2006

Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Chapter I: Unconstrained Optimisation

Unconstrained optimisation deals with problems of the form

(P) min
x∈Rn

f(x)

where f : Rn → R is continuous.

Furthermore, we usually assume that f is C2 with Lipschitz-

continuous Hessian, that is, ∃Λ > 0 such that

‖D2f(x) − D2f(y)‖ ≤ Λ‖x − y‖ ∀x, y ∈ R
n.

Example 1: Risk minimisation under shortselling

• Let us go back to Example 2 of Lecture 1. By eliminating

xn = 1 −
∑n−1

i=1 xi we can get rid of the constraint

n
∑

i=1

xi = 1.

• Furthermore, if we allow short-selling of assets, the con-

straints

xi ≥ 0 (i = 1, . . . , n)

are no longer imposed.

• Finally, let us suppose all the assets considered have the same

expected return µi ≡ µ, so that the only sensible choice for

the target return b is µ itself and the constraint

n
∑

i=1

µixi ≥ b

can be omitted.



The investor’s aim is to minimise the risk, which can be modelled

as

min
x∈Rn−1

f(x1, . . . , xn−1)

=
n−1
∑

i=1

n−1
∑

j=1

σijxixj +
n−1
∑

j=1

σnj

(

1 −
n−1
∑

i=1

xi

)

xj

+
n−1
∑

i=1

σinxi

(

1 −
n−1
∑

j=1

xj

)

+ σnn

(

1 −
n−1
∑

i=1

xi

)(

1 −
n−1
∑

j=1

xj

)

.

• Since the objective function f is a quadratic (degree 2) poly-

nomial in the decision variables x1, . . . , xn−1, we have f ∈ C∞.

• Moreover, the Hessian D2f(x) is the same (n − 1) × (n − 1)

matrix







1 0 −1
.. . −1

0 1 −1













σ11 . . . σ1n
. . .

σn1 . . . σnn

















1 0
.. .

0 1
−1 . . . −1











for all x, and hence x 7→ D2f(x) is a constant function, which

is of course Lipschitz-continuous:

‖D2f(x) − D2f(y)‖ = 0 ≤ 0 × ‖x − y‖ ∀x, y ∈ R
n−1.

Example 2:

• On a CAD system it takes n parameters x1, . . . , xn to define

the shape of a car.

• An engineer has a piece of software which takes the design

parameters x ∈ Rn as input and computes the air resistance

f(x) of the corresponding fuselage as output.

• The software contains typically millions of lines of code, but

for theoretical reasons it is known that f ∈ C2.

• Using automatic differentiation, the engineer can automati-

cally produce a piece of software that computes directional

derivatives

Dvf(x) =
d

dt
f(x + tv), Du,vf(x) =

d2

ds dt
f(x + su + tv).

• How to choose the design parameters so as to minimise the

drag on the fuselage?



Some Notation:

• If x ∈ Rn then ‖x‖ denotes the Euclidean norm
√

∑

x2
i .

• If A : Rn → Rm is a linear map, then ‖A‖ denotes the operator

norm defined by the Euclidean norms on Rn and Rm, that is,

‖A‖ = inf{λ > 0 : ‖Ax‖ ≤ λ‖x‖ ∀x ∈ R
n}.

• The gradient ∇f(x) of a function f : Rn → R is sometimes

denoted by gf(x), and its Hessian D2f(x) by Hf(x).

• The Jacobian Df(x) of a function f : Rn → Rm is sometimes

denoted by Jf(x). Note: if m = 1 then Jf(x) = gf(x)
T.

Theorem 1: Optimality Conditions for Unconst. Opt.

(i) Necessary first order optimality condition: if f : Rn → R is
differentiable at x∗ ∈ Rn and has a local minimum there, then
∇f(x∗) = 0 (x∗ is a stationary point of f).

(ii) Necessary second order condition: if f : Rn → R is twice
differentiable at x∗ ∈ Rn and has a local minimum there,
then D2f(x∗) is positive semidefinite (i.e., hTD2f(x∗)h ≥ 0
for all h ∈ Rn; we write D2f(x∗) � 0 to express this).

(iii) Sufficient optimiality conditions: if f : Rn → R is twice dif-
ferentiable at x∗ ∈ Rn, and if ∇f(x∗) = 0 and D2f(x∗) is
positive definite (i.e., hT∇2f(x∗)h > 0 for all h ∈ Rn \{0}; we
write D2f(x∗) � 0), then x∗ is a local minimiser of f .

Simple idea of proof: use Taylor approximation!

• x∗ is a local minimiser ⇒ there exists ε > 0 such that

f(x∗ + h) ≥ f(x∗), ∀h ∈ Bε(0),

• Therefore, writing 〈·, ·〉 for the Euclidean inner product, ∀h ∈

Rn,

〈∇f(x∗), h〉 = lim
t→0

f(x∗ + th) − f(x∗)

t
≥ lim

t→0

f(x∗) − f(x∗)

t
= 0.

• In particular, apply this inequality to h = −∇f(x∗):

0 ≤ 〈∇f(x∗),−∇f(x∗)〉 = −‖∇f(x∗‖2 ≤ 0,

• This shows that ∇f(x∗) = 0 and establishes i).

• For proofs of ii) and iii), see the Lecture Note 2. These are

based on 2nd order Taylor approximations.

Important Consequence: Solving the simultaneous system of

nonlinear equations

∇f(x) = 0

by an iterative procedure generating a sequence of points (xk)N,

if we can assure that f(xk) decreases in each iteration,

f(xk+1) ≤ f(xk) ∀ k,



then in practice (xk)N can only converge to a local minimiser x∗

and

‖∇f(x∗)‖ < ε

can be used as a stopping criterion.

There are two main families of such procedures:

1. Line-search methods

2. Trust-region methods

Example 3: Steepest descent without line searches

Starting from some x0 ∈ Rn, compute a sequence of intermediate

solutions (xk)N defined by

xk+1 = xk −∇f(xk).

• The method is motivated by the fact that −∇f(xk) is the

direction in which f decreases fastest when moving away

from xk.

• For small t > 0 decrease occurs: f(xk − t∇f(xk)) ≤ f(xk).

• However, it is not necessarily the case that f(xk+1) ≤ f(xk),

as the step −∇f(xk) can be too far.

• To make the method work, line-searches are necessary: in

each iteration find tk > 0 such that

f(xk − t∇f(xk)) < f(xk)

and set

xk+1 = xk − t∇f(xk).

• Warning: although this method works in principle, it is too

primitive to produce any good results in practice!

We now set out to generalise this example.

Algorithm 1: Descent method. Choose a starting point x0 ∈

Rn and a tolerance parameter ε > 0. Set k = 0.

S1 If ‖∇f(xk)‖ ≤ ε then stop and output xk as an approximate

minimiser.

S2 Choose a search direction dk ∈ Rn such that 〈∇f(xk), dk〉 < 0.

S3 Choose a step size αk > 0 such that f(xk + αkdk) < f(xk).

S4 Set xk+1 := xk + αkdk, replace k by k + 1, and go to S1.



The generality of Algorithm 1 leaves flexibility both in

1. the choice of the step length αk,

2. and in the search direction dk.

In the remainder of this lecture we discuss the step length selec-

tion and treat the choice of good search directions in the next

few lectures.

Line-Searches:

In an exact line-search αk is defined by

αk := inf{α ≥ 0 : φ′(α) = 0},

where φ(α) = f(xk + αdk).

Note that the point xk + αkdk is the first stationary point of f

encountered along the half line {xk + αdk : α ≥ 0}.

Note that if {α ≥ 0 : φ′(α) = 0} = ∅, as is the case for example

when φ(α) = − lnα, then {α ≥ 0 : φ′(α) = 0} = ∅, and hence

αk := inf ∅ = +∞ corresponds to an infinitely long step which is

still sensible.

• Exact line searches are mainly a theoretical tool in the con-

vergence analysis of algorithms.

• In practice, they are computationally too expensive.

Let us now derive step length computations that are equally good

choices for the purposes of Algorithm 1.

Definition 1: Wolfe Conditions

We say that the step size αk of Algorithm 1 satisfies the Wolfe

conditions if

φ(αk) ≤ φ(0) + c1αkφ′(0), and (1)

φ′(αk) ≥ c2φ′(0), (2)

where 0 < c1 < 1/2 and c1 < c2 < 1 are constants, and where φ

is the function φ(α) = f(xk + αdk).



• Condition (1) ensures that the actual objective value de-

crease f(xk) − f(xk + αkdk) equals at least a fixed fraction

of the change −αk〈∇f(xk), dk〉 predicted by the first order

Taylor approximation

f(xk + αkdk) ≈ f(xk) + αk〈∇f(xk), dk〉.

• The restriction c1 ≤ 1/2 is desirable because this allows αk to

take the value of the exact minimiser when φ(α) is a convex

quadratic function.

• Condition (2) on the other hand guarantees that the step

size is not zero, because 〈∇f(xk + αkdk), dk〉 is substantially

larger than 〈∇f(xk), dk〉 (which is a negative number).

Proposition 1: Feasible Step Length Exists

If f ∈ C1(Rn) is bounded below on the half-line {xk+αdk : α ≥ 0}

then there exists a step length αk ∈ (0,∞) that satisfies the Wolfe

conditions.

Proof: See Lecture Note 2.

Convergence Analysis of Descent Methods

Lemma 1

Let Algorithm 1 be applied to a C1 function f with Λ-Lipschitz

continuous gradient and assume that the step length αk satisfies

the Wolfe conditions. Then

f(xk+1) ≤ f(xk) − c1(1 − c2)
(cos2 θk)‖∇f(xk)‖

2

Λ
,

where θk is the angle between dk and −∇f(xk), and where c1, c2
are the constants from Definition 1.

• The second Wolfe condition implies

〈∇f(xk + αkdk), dk〉 − 〈∇f(xk), dk〉 = φ′(αk) − φ′(0)

≥ (c2 − 1)φ′(0)

= (1 − c2) (−〈∇f(xk), dk〉) .

• The Cauchy–Schwartz inequality and the Lipschitz condition

imply that the left hand side of this expression is bounded

above by αkΛ‖dk‖
2.

• Therefore,

αk ≥ (1 − c2) ·
−〈∇f(xk), dk〉

Λ‖dk‖
2

.



• Since 〈∇f(xk), dk〉 < 0, Condition (1) yields

f(xk+1) = φ(αk) ≤ φ(0) + c1αkφ′(0)

≤ f(xk) − c1(1 − c2)

(

〈∇f(xk), dk〉
)2

Λ‖dk‖
2

.

• Since

〈∇f(xk), dk〉 = − cos θk‖dk‖ · ‖∇f(xk)‖,

this proves the result.

Theorem 2: Convergence of Descent Method

Suppose f ∈ C1(Rn) has Lipschitz continuous gradients on Rn

and is bounded below. When Algorithm 1 is applied with step

lengths αk that satisfy the Wolfe conditions then

∞
∑

k=0

(cos2 θk)‖∇f(xk)‖
2 < ∞,

where θk is defined as in Lemma 1.

• Let b be a lower bound for f , that is f(x) ≥ b for all x ∈ Rn.

• Lemma 1 shows that

f(x0) − b ≥ f(x0) − f(xk+1)

≥ f(x0) − f(xk) + c1(1 − c2)
(cos2 θk)‖∇f(xk)‖

2

Λ
≥ . . .

≥ f(x0) − f(x0) +
c1(1 − c2)

Λ

j
∑

k=0

(cos2 θk)‖∇f(xk)‖
2.

• Therefore,

0 ≤
j

∑

k=0

(cos2 θk)‖∇f(xk)‖
2 ≤

(

f(x0) − b
)

Λ

c1(1 − c2)
.

Theorem 2 establishes that

• either ∇f(xk) converges to the zero vector as k → ∞, that is,

asymptotically xk becomes an approximate stationary point

(and because of the descent condition this is an approximate

minimiser),

• or else the angle θk converges to π/2, which is to say that the

search direction asymptotically looses the property of being

a descent direction.



Furthermore, if the objective function is bounded below. When

this is not the case, the algorithm fails to terminate in finite time

but produces a sequence (xk)N such that limk→∞ f(xk) = −∞,

as is sensible.

Reading Assignment: Down-load and read Lecture-Note 2.


