The Descent Method and Line Searches

Lecture 2, Continuous Optimisation
Oxford University Computing Laboratory, HT 2006
Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Chapter I: Unconstrained Optimisation

Unconstrained optimisation deals with problems of the form

$$
\text { (P) } \quad \min _{x \in \mathbb{R}^{n}} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous.
Furthermore, we usually assume that f is C^{2} with Lipschitzcontinuous Hessian, that is, $\exists \wedge>0$ such that

$$
\left\|D^{2} f(x)-D^{2} f(y)\right\| \leq \Lambda\|x-y\| \quad \forall x, y \in \mathbb{R}^{n} .
$$

Example 1: Risk minimisation under shortselling

- Let us go back to Example 2 of Lecture 1. By eliminating $x_{n}=1-\sum_{i=1}^{n-1} x_{i}$ we can get rid of the constraint

$$
\sum_{i=1}^{n} x_{i}=1
$$

- Furthermore, if we allow short-selling of assets, the constraints

$$
x_{i} \geq 0 \quad(i=1, \ldots, n)
$$

are no longer imposed.

- Finally, let us suppose all the assets considered have the same expected return $\mu_{i} \equiv \mu$, so that the only sensible choice for the target return b is μ itself and the constraint

$$
\sum_{i=1}^{n} \mu_{i} x_{i} \geq b
$$

can be omitted.

The investor's aim is to minimise the risk, which can be modelled as

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n-1}} f\left(x_{1}, \ldots, x_{n-1}\right) \\
&=\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sigma_{i j} x_{i} x_{j}+\sum_{j=1}^{n-1} \sigma_{n j}\left(1-\sum_{i=1}^{n-1} x_{i}\right) x_{j} \\
&+\sum_{i=1}^{n-1} \sigma_{i n} x_{i}\left(1-\sum_{j=1}^{n-1} x_{j}\right)+\sigma_{n n}\left(1-\sum_{i=1}^{n-1} x_{i}\right)\left(1-\sum_{j=1}^{n-1} x_{j}\right)
\end{aligned}
$$

- Since the objective function f is a quadratic (degree 2) polynomial in the decision variables x_{1}, \ldots, x_{n-1}, we have $f \in C^{\infty}$.
- Moreover, the Hessian $D^{2} f(x)$ is the same $(n-1) \times(n-1)$ matrix

$$
\left(\begin{array}{llll}
1 & & 0 & -1 \\
& \ddots & & -1 \\
0 & & 1 & -1
\end{array}\right)\left(\begin{array}{lll}
\sigma_{11} & \ldots & \sigma_{1 n} \\
\sigma_{n 1} & \ldots & \sigma_{n n}
\end{array}\right)\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1 \\
-1 & \ldots & -1
\end{array}\right)
$$

for all x, and hence $x \mapsto D^{2} f(x)$ is a constant function, which is of course Lipschitz-continuous:

$$
\left\|D^{2} f(x)-D^{2} f(y)\right\|=0 \leq 0 \times\|x-y\| \quad \forall x, y \in \mathbb{R}^{n-1} .
$$

Example 2:

- On a CAD system it takes n parameters x_{1}, \ldots, x_{n} to define the shape of a car.
- An engineer has a piece of software which takes the design parameters $x \in \mathbb{R}^{n}$ as input and computes the air resistance $f(x)$ of the corresponding fuselage as output.
- The software contains typically millions of lines of code, but for theoretical reasons it is known that $f \in C^{2}$.
- Using automatic differentiation, the engineer can automatically produce a piece of software that computes directional derivatives

$$
D_{v} f(x)=\frac{d}{d t} f(x+t v), \quad D_{u, v} f(x)=\frac{d^{2}}{d s d t} f(x+s u+t v)
$$

- How to choose the design parameters so as to minimise the drag on the fuselage?

Some Notation:

- If $x \in \mathbb{R}^{n}$ then $\|x\|$ denotes the Euclidean norm $\sqrt{\sum x_{i}^{2}}$.
- If $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, then $\|A\|$ denotes the operator norm defined by the Euclidean norms on \mathbb{R}^{n} and \mathbb{R}^{m}, that is,

$$
\|A\|=\inf \left\{\lambda>0:\|A x\| \leq \lambda\|x\| \forall x \in \mathbb{R}^{n}\right\}
$$

- The gradient $\nabla f(x)$ of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is sometimes denoted by $g_{f}(x)$, and its Hessian $D^{2} f(x)$ by $H_{f}(x)$.
- The Jacobian $D f(x)$ of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is sometimes denoted by $J_{f}(x)$. Note: if $m=1$ then $J_{f}(x)=g_{f}(x)^{\top}$.

Theorem 1: Optimality Conditions for Unconst. Opt.

(i) Necessary first order optimality condition: if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x^{*} \in \mathbb{R}^{n}$ and has a local minimum there, then $\nabla f\left(x^{*}\right)=0\left(x^{*}\right.$ is a stationary point of f).
(ii) Necessary second order condition: if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable at $x^{*} \in \mathbb{R}^{n}$ and has a local minimum there, then $D^{2} f\left(x^{*}\right)$ is positive semidefinite (i.e., $h^{\top} D^{2} f\left(x^{*}\right) h \geq 0$ for all $h \in \mathbb{R}^{n}$; we write $D^{2} f\left(x^{*}\right) \succeq 0$ to express this).
(iii) Sufficient optimiality conditions: if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable at $x^{*} \in \mathbb{R}^{n}$, and if $\nabla f\left(x^{*}\right)=0$ and $D^{2} f\left(x^{*}\right)$ is positive definite (i.e., $h^{\top} \nabla^{2} f\left(x^{*}\right) h>0$ for all $h \in \mathbb{R}^{n} \backslash\{0\}$; we write $D^{2} f\left(x^{*}\right) \succ 0$), then x^{*} is a local minimiser of f.

Simple idea of proof: use Taylor approximation!

- x^{*} is a local minimiser \Rightarrow there exists $\epsilon>0$ such that

$$
f\left(x^{*}+h\right) \geq f\left(x^{*}\right), \quad \forall h \in B_{\epsilon}(0),
$$

- Therefore, writing $\langle\cdot, \cdot\rangle$ for the Euclidean inner product, $\forall h \in$ \mathbb{R}^{n},
$\left\langle\nabla f\left(x^{*}\right), h\right\rangle=\lim _{t \rightarrow 0} \frac{f\left(x^{*}+t h\right)-f\left(x^{*}\right)}{t} \geq \lim _{t \rightarrow 0} \frac{f\left(x^{*}\right)-f\left(x^{*}\right)}{t}=0$.
- In particular, apply this inequality to $h=-\nabla f\left(x^{*}\right)$:

$$
0 \leq\left\langle\nabla f\left(x^{*}\right),-\nabla f\left(x^{*}\right)\right\rangle=-\| \nabla f\left(x^{*} \|^{2} \leq 0,\right.
$$

- This shows that $\nabla f\left(x^{*}\right)=0$ and establishes i).
- For proofs of ii) and iii), see the Lecture Note 2. These are based on 2nd order Taylor approximations.

Important Consequence: Solving the simultaneous system of nonlinear equations

$$
\nabla f(x)=0
$$

by an iterative procedure generating a sequence of points $\left(x_{k}\right)_{\mathbb{N}}$, if we can assure that $f\left(x_{k}\right)$ decreases in each iteration,

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right) \quad \forall k,
$$

then in practice $\left(x_{k}\right)_{\mathbb{N}}$ can only converge to a local minimiser x^{*} and

$$
\left\|\nabla f\left(x^{*}\right)\right\|<\epsilon
$$

can be used as a stopping criterion.

There are two main families of such procedures:

1. Line-search methods
2. Trust-region methods

Example 3: Steepest descent without line searches

Starting from some $x_{0} \in \mathbb{R}^{n}$, compute a sequence of intermediate solutions $\left(x_{k}\right)_{\mathbb{N}}$ defined by

$$
x_{k+1}=x_{k}-\nabla f\left(x_{k}\right) .
$$

- The method is motivated by the fact that $-\nabla f\left(x_{k}\right)$ is the direction in which f decreases fastest when moving away from x_{k}.
- For small $t>0$ decrease occurs: $f\left(x_{k}-t \nabla f\left(x_{k}\right)\right) \leq f\left(x_{k}\right)$.
- However, it is not necessarily the case that $f\left(x_{k+1}\right) \leq f\left(x_{k}\right)$, as the step $-\nabla f\left(x_{k}\right)$ can be too far.
- To make the method work, line-searches are necessary: in each iteration find $t_{k}>0$ such that

$$
f\left(x_{k}-t \nabla f\left(x_{k}\right)\right)<f\left(x_{k}\right)
$$

and set

$$
x_{k+1}=x_{k}-t \nabla f\left(x_{k}\right) .
$$

- Warning: although this method works in principle, it is too primitive to produce any good results in practice!

We now set out to generalise this example.

Algorithm 1: Descent method. Choose a starting point $x_{0} \in$ \mathbb{R}^{n} and a tolerance parameter $\epsilon>0$. Set $k=0$.

S1 If $\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon$ then stop and output x_{k} as an approximate minimiser.

S2 Choose a search direction $d_{k} \in \mathbb{R}^{n}$ such that $\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle<0$.

S3 Choose a step size $\alpha_{k}>0$ such that $f\left(x_{k}+\alpha_{k} d_{k}\right)<f\left(x_{k}\right)$.

S4 Set $x_{k+1}:=x_{k}+\alpha_{k} d_{k}$, replace k by $k+1$, and go to S 1 .

The generality of Algorithm 1 leaves flexibility both in

1. the choice of the step length α_{k},
2. and in the search direction d_{k}.

In the remainder of this lecture we discuss the step length selection and treat the choice of good search directions in the next few lectures.

Line-Searches:

In an exact line-search α_{k} is defined by

$$
\alpha_{k}:=\inf \left\{\alpha \geq 0: \phi^{\prime}(\alpha)=0\right\}
$$

where $\phi(\alpha)=f\left(x_{k}+\alpha d_{k}\right)$.

Note that the point $x_{k}+\alpha_{k} d_{k}$ is the first stationary point of f encountered along the half line $\left\{x_{k}+\alpha d_{k}: \alpha \geq 0\right\}$.

Note that if $\left\{\alpha \geq 0: \phi^{\prime}(\alpha)=0\right\}=\emptyset$, as is the case for example when $\phi(\alpha)=-\ln \alpha$, then $\left\{\alpha \geq 0: \phi^{\prime}(\alpha)=0\right\}=\emptyset$, and hence $\alpha_{k}:=\inf \emptyset=+\infty$ corresponds to an infinitely long step which is still sensible.

- Exact line searches are mainly a theoretical tool in the convergence analysis of algorithms.
- In practice, they are computationally too expensive.

Let us now derive step length computations that are equally good choices for the purposes of Algorithm 1.

Definition 1: Wolfe Conditions

We say that the step size α_{k} of Algorithm 1 satisfies the Wolfe conditions if

$$
\begin{align*}
\phi\left(\alpha_{k}\right) & \leq \phi(0)+c_{1} \alpha_{k} \phi^{\prime}(0), \quad \text { and } \tag{1}\\
\phi^{\prime}\left(\alpha_{k}\right) & \geq c_{2} \phi^{\prime}(0), \tag{2}
\end{align*}
$$

where $0<c_{1}<1 / 2$ and $c_{1}<c_{2}<1$ are constants, and where ϕ is the function $\phi(\alpha)=f\left(x_{k}+\alpha d_{k}\right)$.

- Condition (1) ensures that the actual objective value decrease $f\left(x_{k}\right)-f\left(x_{k}+\alpha_{k} d_{k}\right)$ equals at least a fixed fraction of the change $-\alpha_{k}\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle$ predicted by the first order Taylor approximation

$$
f\left(x_{k}+\alpha_{k} d_{k}\right) \approx f\left(x_{k}\right)+\alpha_{k}\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle .
$$

- The restriction $c_{1} \leq 1 / 2$ is desirable because this allows α_{k} to take the value of the exact minimiser when $\phi(\alpha)$ is a convex quadratic function.
- Condition (2) on the other hand guarantees that the step size is not zero, because $\left\langle\nabla f\left(x_{k}+\alpha_{k} d_{k}\right), d_{k}\right\rangle$ is substantially larger than $\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle$ (which is a negative number).

Proposition 1: Feasible Step Length Exists

If $f \in C^{1}\left(\mathbb{R}^{n}\right)$ is bounded below on the half-line $\left\{x_{k}+\alpha d_{k}: \alpha \geq 0\right\}$ then there exists a step length $\alpha_{k} \in(0, \infty)$ that satisfies the Wolfe conditions.

Proof: See Lecture Note 2.

Convergence Analysis of Descent Methods

Lemma 1

Let Algorithm 1 be applied to a C^{1} function f with \wedge-Lipschitz continuous gradient and assume that the step length α_{k} satisfies the Wolfe conditions. Then

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-c_{1}\left(1-c_{2}\right) \frac{\left(\cos ^{2} \theta_{k}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\wedge},
$$

where θ_{k} is the angle between d_{k} and $-\nabla f\left(x_{k}\right)$, and where c_{1}, c_{2} are the constants from Definition 1.

- The second Wolfe condition implies

$$
\begin{aligned}
\left\langle\nabla f\left(x_{k}+\alpha_{k} d_{k}\right), d_{k}\right\rangle & -\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle=\phi^{\prime}\left(\alpha_{k}\right)-\phi^{\prime}(0) \\
& \geq\left(c_{2}-1\right) \phi^{\prime}(0) \\
& =\left(1-c_{2}\right)\left(-\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle\right)
\end{aligned}
$$

- The Cauchy-Schwartz inequality and the Lipschitz condition imply that the left hand side of this expression is bounded above by $\alpha_{k} \wedge\left\|d_{k}\right\|^{2}$.
- Therefore,

$$
\alpha_{k} \geq\left(1-c_{2}\right) \cdot \frac{-\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle}{\Lambda\left\|d_{k}\right\|^{2}}
$$

- Since $\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle<0$, Condition (1) yields

$$
\begin{aligned}
f\left(x_{k+1}\right)=\phi\left(\alpha_{k}\right) \leq \phi(0) & +c_{1} \alpha_{k} \phi^{\prime}(0) \\
& \leq f\left(x_{k}\right)-c_{1}\left(1-c_{2}\right) \frac{\left(\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle\right)^{2}}{\wedge\left\|d_{k}\right\|^{2}} .
\end{aligned}
$$

- Since

$$
\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle=-\cos \theta_{k}\left\|d_{k}\right\| \cdot\left\|\nabla f\left(x_{k}\right)\right\|,
$$

this proves the result.

Theorem 2: Convergence of Descent Method

Suppose $f \in C^{1}\left(\mathbb{R}^{n}\right)$ has Lipschitz continuous gradients on \mathbb{R}^{n} and is bounded below. When Algorithm 1 is applied with step lengths α_{k} that satisfy the Wolfe conditions then

$$
\sum_{k=0}^{\infty}\left(\cos ^{2} \theta_{k}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}<\infty
$$

where θ_{k} is defined as in Lemma 1 .

- Let b be a lower bound for f, that is $f(x) \geq b$ for all $x \in \mathbb{R}^{n}$.
- Lemma 1 shows that

$$
\begin{aligned}
f\left(x_{0}\right)-b & \geq f\left(x_{0}\right)-f\left(x_{k+1}\right) \\
& \geq f\left(x_{0}\right)-f\left(x_{k}\right)+c_{1}\left(1-c_{2}\right) \frac{\left(\cos ^{2} \theta_{k}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\wedge} \\
& \geq \ldots \\
& \geq f\left(x_{0}\right)-f\left(x_{0}\right)+\frac{c_{1}\left(1-c_{2}\right)}{\Lambda} \sum_{k=0}^{j}\left(\cos ^{2} \theta_{k}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

- Therefore,

$$
0 \leq \sum_{k=0}^{j}\left(\cos ^{2} \theta_{k}\right)\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq \frac{\left(f\left(x_{0}\right)-b\right) \wedge}{c_{1}\left(1-c_{2}\right)} .
$$

Theorem 2 establishes that

- either $\nabla f\left(x_{k}\right)$ converges to the zero vector as $k \rightarrow \infty$, that is, asymptotically x_{k} becomes an approximate stationary point (and because of the descent condition this is an approximate minimiser),
- or else the angle θ_{k} converges to $\pi / 2$, which is to say that the search direction asymptotically looses the property of being a descent direction.

Furthermore, if the objective function is bounded below. When this is not the case, the algorithm fails to terminate in finite time but produces a sequence $\left(x_{k}\right)_{\mathbb{N}}$ such that $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=-\infty$, as is sensible.

Reading Assignment: Down-load and read Lecture-Note 2.

