The Steepest Descent, Coordinate Search and the Newton-Raphson Method

Lecture 3, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Algorithm 1 Choose a starting point $x_{0} \in \mathbb{R}^{n}$ and a tolerance parameter $\epsilon>0$. Set $k=0$.

S1 If $\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon$ then stop and output x_{k} as an approximate minimiser.

S2 Choose a search direction $d_{k} \in \mathbb{R}^{n}$ such that $\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle<0$.

S3 Choose a step size $\alpha_{k}>0$ such that $f\left(x_{k}+\alpha_{k} d_{k}\right)<f\left(x_{k}\right)$.

S4 Set $x_{k+1}:=x_{k}+\alpha_{k} d_{k}$, replace k by $k+1$, and go to S1.

We continue to consider the unconstrained minimisation problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

In Lecture 2 we considered line-search descent methods:

We proved a convergence result which only required that

- d_{k} is a descent direction; $\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle<0$,
- a line-search has to be used.

Since we already discussed the issue of choosing a step length α_{k} (remember the Wolfe conditions?), we can now concentrate on methods to compute good search directions d_{k}.

Steepest Descent: This choice of search direction was already motivated and discussed in Example 2 of Lecture 2 :

$$
d_{k}=-\nabla f\left(x_{k}\right)
$$

- Intuitively appealing.
- Easy to apply, $-\nabla f\left(x_{k}\right)$ "cheap" to compute.
- $\theta\left(-\nabla f\left(x_{k}\right), d_{k}\right) \equiv 0$ in this case, and Theorem 2 of Lecture 2 implies convergence.

The second condition implies that the ordered eigenvalues of $D^{2} f\left(x^{*}\right)$ satisfy

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0
$$

The ratio $\kappa:=\frac{\lambda_{1}}{\lambda_{n}}$ is called the condition number of $D^{2} f\left(x^{*}\right)$. If κ is large, then x^{*} lies in a "long narrow valley" of f.

Once the steepest descent method enters this valley, it just bounces back and forth without making much progress when κ is large:

Regrettably, the method has major disadvantages:

- Badly affected by round-off errors.
- Badly affected by ill-conditioning, convergence can be excruciatingly slow due to excessive zig-zagging.

To illustrate this, let x^{*} be a strict local minimiser of f and suppose that the sufficient first and second order optimality conditions hold, i.e.,

$$
\nabla f\left(x^{*}\right)=0, \quad D^{2} f\left(x^{*}\right) \succ 0
$$

Proposition 1: Let x_{0} be a starting point and let the sequence $\left(x_{k}\right)_{\mathbb{N}}$ be produced by

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

where α_{k} corresponds to an exact line-search (see Lecture 2). Then

$$
\left\|x_{k+1}-x^{*}\right\| \simeq \frac{\kappa-1}{\kappa+1}\left\|x_{k}-x^{*}\right\|
$$

for all k large.

Coordinate Search: This method is even simpler, as the search direction cycles through the coordinate axes:

$$
d_{k}=e_{i}, \quad i \equiv 1+k \quad \bmod n
$$

- Even cheaper, as d_{k} does not have to be computed at all.
- Convergence even worse than steepest descent.
- Therefore, if x_{k} is close to x^{*}, then it is reasonable to expect that the solution

$$
x_{k+1}=x_{k}-\left(D^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)
$$

of the linearised system of equations $\varphi(x)=0$ lies even closer to x^{*}.

- $n_{f}\left(x_{k}\right):=-\left(D^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$ is called the Newton direction.

Newton Methods: This approach is motivated by the first order necessary optimality condition $\nabla f\left(x^{*}\right)=0$ and works when $D^{2} f(x)$ is non-singular for x in a neighbourhood of x^{*}.

- Idea: replace the nonlinear root-finding problem $\nabla f(x)=0$ by a sequence of linear problems which are easy to solve.
- Linearisation: given x_{k}, the first order Taylor approximation

$$
x \mapsto \varphi(x)=\nabla f\left(x_{k}\right)+D^{2} f\left(x_{k}\right)\left(x-x_{k}\right)
$$

approximates the nonlinear (vector valued) function $x \mapsto$ $\nabla f(x)$ well in a neighbourhood of x_{k}.

Newton-Raphson method: given a starting point x_{0}, apply exact Newton steps

$$
x_{k+1}=x_{k}+n_{f}\left(x_{k}\right)
$$

- $n_{f}(x)$ is a descent direction when $D^{2} f(x) \succ 0$:

$$
\left\langle n_{f}(x), \nabla f(x)\right\rangle=-(\nabla f(x))^{\top}\left(D^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)<0
$$

since $D^{2} f(x) \succ 0 \Rightarrow\left(D^{2} f(x)\right)^{-1} \succ 0$. In particular, this happens when f is strictly convex (see Lecture 1).

- If $D^{2} f(x) \nsucc 0$ then $n_{f}(x)$ may not be a descent direction and the method may converge to any point where $\nabla f(x)=0$, which could be a minimiser, maximiser or saddle point.
- Examples can be constructed on which the method cycles through a finite number of points, that is, $x_{k+j}=x_{k}$ for some $k, j \in \mathbb{N}$, and the method does not converge.
- However, when x_{0} is chosen sufficiently close to x^{*} where the first and second order optimality conditions for a minimiser hold, then the convergence is Q-quadratic, see Theorem 1 below.

Dampened Newton method:

- Uses the following search direction in Algorithm 1,

$$
d_{k}= \begin{cases}n_{f}\left(x_{k}\right) & \text { if }\left\langle n_{f}\left(x_{k}\right), \nabla f\left(x_{k}\right)\right\rangle<0 \\ -n_{f}\left(x_{k}\right) & \text { otherwise }\end{cases}
$$

- the line-search step length α_{k} should asymptotically become 1 (i.e., full Newton step taken) if the fast convergence rate of the Newton-Raphson method is to be picked up.

Conclusions:

- Newton's method is great for the minimisation of convex problems (or the maximisation of concave problems).
- Since f is typically strictly convex in a neighbourhood of a local minimiser x^{*}, it is great to switch to Newton's method in the final phase of an algorithm that otherwise relies on a line-search descent method.

Example 1: Linear Programming. Consider the linear programming problem

$$
\begin{array}{cl}
\max _{x \in \mathbb{R}^{n}} c^{\top} x \\
\text { s.t. } & A x \leq b, \\
& x \geq 0
\end{array}
$$

Here $A \in \mathbb{R}^{m \times n}$ (a $m \times n$ matrix with linearly independent rows), $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$ are all given, and $x \in \mathbb{R}^{n}$ is the vector of decision variables.

Let $\mu>0$ and $e:=\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]^{\top}$.

At the heart of interior-point methods for linear programming lies the solution of the nonlinear system of equations

$$
\begin{align*}
A x & =b \tag{1}\\
A^{\top} y+s & =c \tag{2}\\
X S e & =\mu e \tag{3}\\
x, s & >0, \tag{4}
\end{align*}
$$

where $x, s \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, X=\operatorname{Diag}(x)$ and $S=\operatorname{Diag}(s)$ are the diagonal matrices with x and s on their diagonals, and where $x, s>0$ means that both vectors have to be component-wise strictly positive.

In order to guarantee that (4) continues to be satisfied, we use ($\Delta x, \Delta y, \Delta s$) as a search direction and determine an updated approximate solution $\left(x_{+}, y_{+}, s_{+}\right)$as follows:

$$
\begin{aligned}
\alpha^{*} & =\sup \{\alpha>0: x+\alpha \Delta x>0, s+\alpha \Delta s>0\} \\
\left(x_{+}, y_{+}, s_{+}\right) & =(x, y, s)+\min \left(1,0.99 \alpha^{*}\right)(\Delta x, \Delta y, \Delta s)
\end{aligned}
$$

It can be shown that the resulting sequence of intermediate solutions converges very efficiently to $\left(x^{*}, y^{*}, s^{*}\right)$.

It can be shown that the system (1)-(4) has a unique solution $\left(x^{*}, y^{*}, s^{*}\right)$.

Given a current approximate solution (x, y, s) such that $x, s>0$, we can compute a Newton step ($\Delta x, \Delta y, \Delta s$) for the unconstrained system (1)-(3) which is obtained by solving the linearised system of equations

$$
\begin{aligned}
A \Delta x & =b-A x \\
A^{\top} \Delta y+\Delta s & =c-A^{\top} y-s \\
S \Delta x+X \Delta s & =\mu e-X S e
\end{aligned}
$$

Theorem 1: Convergence of Newton-Raphson.

Let $f \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ with \wedge-Lipschitz continuous Hessian. Let $x^{*} \in \mathbb{R}^{n}$ be such that $\nabla f\left(x^{*}\right)=0$ and $D^{2} f\left(x^{*}\right)$ nonsingular. Then there exists a neighbourhood $B_{\rho}\left(x^{*}\right)$ with the property that $x_{0} \in$ $B_{\rho}\left(x^{*}\right)$ implies $x_{k} \in B_{\rho}\left(x^{*}\right)$ for all k, and $x_{k} \rightarrow x^{*}$ Q-quadratically.

Proof:

- $D^{2} f\left(x^{*}\right)$ nonsingular, $x \mapsto D^{2} f(x)$ continuous $\Rightarrow \exists \bar{\rho}>0$ such that $D^{2} f(x)$ nonsingular for all $x \in B_{\bar{\rho}}\left(x^{*}\right)$ and $n_{f}(x)$ welldefined.
- Moreover, $x \mapsto\left(D^{2} f(x)\right)^{-1}$ is continuous, thus can choose $\bar{\rho}$ sufficiently small so that

$$
\begin{equation*}
\left\|\left(D^{2} f(x)\right)^{-1}\right\| \leq 2\left\|\left(D^{2} f\left(x^{*}\right)\right)^{-1}\right\|=: \beta \tag{5}
\end{equation*}
$$

- The Newton update implies

$$
\begin{equation*}
\left(x_{k+1}-x^{*}\right)=\left(x_{k}-x^{*}\right)-\left(D^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right) \tag{6}
\end{equation*}
$$

- Lipschitz continuity of $D^{2} f$ implies

$$
\begin{aligned}
\|S\| & \leq \int_{t=0}^{1}\left\|D^{2} f\left(x_{k}\right)-D^{2} f\left(t x^{*}+(1-t) x_{k}\right)\right\| d t \\
& \leq \int_{t=0}^{1} \wedge t\left\|x_{k}-x^{*}\right\| d t=\frac{\Lambda}{2}\left\|x_{k}-x^{*}\right\|
\end{aligned}
$$

- Substituting this and (5) in (8),

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\| \leq \frac{\beta \wedge}{2}\left\|x_{k}-x^{*}\right\|^{2} \tag{9}
\end{equation*}
$$

- Finally, for $\rho:=\min \left(\bar{\rho}, 2(\beta \Lambda)^{-1}\right)$, (9) shows that

$$
x_{k} \in B_{\rho}\left(x^{*}\right) \Rightarrow x_{k} \in B_{\rho}\left(x^{*}\right)
$$

so that the entire sequence $\left(x_{k}\right)_{\mathbb{N}}$ is well defined as long as $x_{0} \in B_{\rho}\left(x^{*}\right)$.

- Using $\nabla f\left(x^{*}\right)=0$, find
$\nabla f\left(x_{k}\right)=\nabla f\left(x_{k}\right)-\nabla f\left(x^{*}\right)=\int_{t=0}^{1} D^{2} f\left(t x^{*}+(1-t) x_{k}\right)\left(x_{k}-x^{*}\right) d t$
- Substituting into (6),

$$
\begin{equation*}
\left(x_{k+1}-x^{*}\right)=\left(D^{2} f\left(x_{k}\right)\right)^{-1} S\left(x_{k}-x^{*}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
S & :=D^{2} f\left(x_{k}\right)-\int_{t=0}^{1} D^{2} f\left(t x^{*}+(1-t) x_{k}\right) d t \\
& =\int_{t=0}^{1} D^{2} f\left(x_{k}\right)-D^{2} f\left(t x^{*}+(1-t) x_{k}\right) d t
\end{aligned}
$$

- Taking norms on both sides of (7),

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\| \leq\left\|\left(D^{2} f\left(x_{k}\right)\right)^{-1}\right\| \times\|S\| \times\left\|x_{k}-x^{*}\right\| \tag{8}
\end{equation*}
$$

Reading Assignment: Download and read Lecture-Note 3.

Note: From now on all lectures are in Comlab 147.

