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We continue to consider the unconstrained minimisation problem

min f(x).

zERM

In Lecture 2 we considered line-search descent methods:



Algorithm 1 Choose a starting point xg € R"™ and a tolerance
parameter ¢ > 0. Set kK = 0.

S1 If ||V f(zg)| < e then stop and output x; as an approximate
minimiser.

S2 Choose a search direction d;, € R" such that (Vf(z),d;) < 0.

S3 Choose a step size ap, > 0 such that f(xg + apdy) < f(xg).

S4 Set xpy1 = v + agdy, replace k by £+ 1, and go to S1.



We proved a convergence result which only required that

e d;. is a descent direction; (Vf(xy),d;) <O,

e a line-search has to be used.

Since we already discussed the issue of choosing a step length
ap (remember the Wolfe conditions?), we can now concentrate
on methods to compute good search directions d;..



Steepest Descent: This choice of search direction was already
motivated and discussed in Example 2 of Lecture 2:

d, = =V f(z).

e Intuitively appealing.

e Easy to apply, —Vf(z;) "cheap” to compute.

e 0(—Vf(xy),dr) =0 in this case, and Theorem 2 of Lecture 2
implies convergence.



Regrettably, the method has major disadvantages:

e Badly affected by round-off errors.

e Badly affected by ill-conditioning, convergence can be excru-
ciatingly slow due to excessive zig-zagging.

To illustrate this, let ™ be a strict local minimiser of f and sup-
pose that the sufficient first and second order optimality condi-
tions hold, i.e.,

Vf(z*) =0, D?f(z*) = 0.



The second condition implies that the ordered eigenvalues of
D?f(z*) satisfy

The ratio k := f\\_i is called the condition number of D?2f(x*). If

k is large, then z* lies in a "long narrow valley” of f.

Once the steepest descent method enters this valley, it just
bounces back and forth without making much progress when
Kk 1S large:



Proposition 1: Let xg be a starting point and let the sequence
() be produced by

Tp41 = T — oV f(zg),

where «y corresponds to an exact line-search (see Lecture 2).
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for all k large.



Coordinate Search: This method is even simpler, as the search
direction cycles through the coordinate axes:

dk:eia 1=14+k mod n.

e Even cheaper, as d; does not have to be computed at all.

e Convergence even worse than steepest descent.



Newton Methods: This approach is motivated by the first or-
der necessary optimality condition Vf(x*) = 0 and works when
D?f(z) is non-singular for = in a neighbourhood of z*.

e Idea: replace the nonlinear root-finding problem Vf(x) = 0O
by a sequence of linear problems which are easy to solve.

e Linearisation: given x;, the first order Taylor approximation

x> p(x) = Vf(xg) + D?f(xp)(x — x3,),

approximates the nonlinear (vector valued) function = —
Vf(x) well in a neighbourhood of xy.



e Therefore, if x;, is close to x*, then it is reasonable to expect
that the solution

tpr1 = ap — (D2f(a)) Viap)

of the linearised system of equations ¢(x) = O lies even closer
to x*.

o ny(xy) = —(sz(mk))_1Vf(:vk) is called the Newton direc-
tion.



Newton-Raphson method: given a starting point zg, apply exact
Newton steps

Tr4+1 = T + npxy).

o ns(z) is a descent direction when D2f(z) > O:

(np(2), V(@) = (V@) T (D>f(xy)) V() <O,

since D2f(z) = 0 = (D?f(z))"! - 0. In particular, this
happens when f is strictly convex (see Lecture 1).

o If D2f(z) % O then n¢(z) may not be a descent direction and
the method may converge to any point where Vf(x) = O,
which could be a minimiser, maximiser or saddle point.



e Examples can be constructed on which the method cycles
through a finite number of points, that is, Thtj = Tk for
some k,j5 € N, and the method does not converge.

e However, when xg is chosen sufficiently close to x* where the
first and second order optimality conditions for a minimiser
hold, then the convergence is Q-quadratic, see Theorem 1
below.



Conclusions:

e Newton’'s method is great for the minimisation of convex
problems (or the maximisation of concave problems).

e Since f is typically strictly convex in a neighbourhood of a
local minimiser z*, it is great to switch to Newton’s method
in the final phase of an algorithm that otherwise relies on a
line-search descent method.



Dampened Newton method:

e Uses the following search direction in Algorithm 1,

d), = {”f(xk) if (ny(xy), VF(zg)) <O,
—nys(x,)  otherwise.

e the line-search step length «a; should asymptotically become
1 (i.e., full Newton step taken) if the fast convergence rate
of the Newton-Raphson method is to be picked up.



Example 1: Linear Programming. Consider the linear pro-

gramming problem

Max CTQU

rceR"
s.t. Ax <b,

x > 0.

Here A € R™M*"™ (a m x n matrix with linearly independent rows),
b € R"™ and ¢ € R"™ are all given, and =z € R" is the vector of

decision variables.
T
Let > 0 and e ;= [1 1] :



At the heart of interior-point methods for linear programming
lies the solution of the nonlinear system of equations

Az =b (1)
Aly4s=c (2)
XSe = ue (3)
x,s >0, (4)

where z,s € R", y € R™, X = Diag(xz) and S = Diag(s) are the
diagonal matrices with x and s on their diagonals, and where
x,s > 0 means that both vectors have to be component-wise
strictly positive.



It can be shown that the system (1)-(4) has a unique solution
(z*, y*, s¥).

Given a current approximate solution (x,vy,s) such that x,s > 0,
we can compute a Newton step (Az, Ay, As) for the uncon-
strained system (1)-(3) which is obtained by solving the linearised
system of equations

AAx =b— Ax
ATAy—I—Aszc—ATy—S
SAx + XAs = ue — XSe.



In order to guarantee that (4) continues to be satisfied, we use
(Ax, Ay, As) as a search direction and determine an updated
approximate solution (z4,y4,s4) as follows:

o =sup{a>0:z+ alzx >0, s+ als > 0},
(z4,y+,54) = (x,y,s) + min(1,0.99a") (Azx, Ay, As).

It can be shown that the resulting sequence of intermediate so-
lutions converges very efficiently to (z*,y*, s*).



Theorem 1: Convergence of Newton-Raphson.

Let f € C2(R™ R) with A-Lipschitz continuous Hessian. Let
z* € R™ be such that Vf(z*) = 0 and D2f(z*) nonsingular. Then
there exists a neighbourhood B,(z*) with the property that zg €
B,(z*) implies x, € By(x*) for all k, and z; — «* Q-quadratically.



Proof:

e D2f(z*) nonsingular, x — D?f(z) continuous = 35 > 0 such
that D?2f(z) nonsingular for all z € B;(z*) and ns(z) well-
defined.

e Moreover, z — (D?f(z))~1 is continuous, thus can choose p
sufficiently small so that

I(D2f()) 7| < 2(D?f (=)~ =: 8. (5)

e [ he Newton update implies

(g1 — ) = (mp — ") — (D f(x)) 'V F(x).  (6)



e Using Vf(z*) =0, find

Vi(er) = VIR~V @) = [ D2f(t (1) et

e Substituting into (6),

(why1 —2) = (D2f(xp)) S (w — 2"), (7)
where

1
S 1= D2 f(z;,) — /t:O D2f(ta* 4 (1 — )z}, )dt

1
— /t=0 D2f(xy) — D2f(tz* + (1 — t)zy,)dt.

e Taking norms on both sides of (7),
|lzgg1 — o < N(D2F(xe)) "M < |IS] % Nlzg — =¥ (8)



e Lipschitz continuity of D2f implies
1
ISI < |_ ID?f(ay) = D?f(ta" + (1 = D)y |t

< [0 Atllay— 2t =1y~ 2|
. — I — || — X |].
= li—o k > k

e Substituting this and (5) in (8),

BA
lopgr — 2"l < - [l — 2712 (9)

e Finally, for p := min(p,2(BA)~1), (9) shows that

zy, € Bp(x™) = x, € By(a™),

so that the entire sequence (xp)y is well defined as long as
xrg € Bp(x™).



Reading Assignment: Download and read Lecture-Note 3.

Note: From now on all lectures are in Comlab 147.



