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We continue to consider the unconstrained minimisation problem

min
x∈Rn

f(x).

In Lecture 2 we considered line-search descent methods:



Algorithm 1 Choose a starting point x0 ∈ Rn and a tolerance

parameter ε > 0. Set k = 0.

S1 If ‖∇f(xk)‖ ≤ ε then stop and output xk as an approximate

minimiser.

S2 Choose a search direction dk ∈ Rn such that 〈∇f(xk), dk〉 < 0.

S3 Choose a step size αk > 0 such that f(xk + αkdk) < f(xk).

S4 Set xk+1 := xk + αkdk, replace k by k + 1, and go to S1.



We proved a convergence result which only required that

• dk is a descent direction; 〈∇f(xk), dk〉 < 0,

• a line-search has to be used.

Since we already discussed the issue of choosing a step length

αk (remember the Wolfe conditions?), we can now concentrate

on methods to compute good search directions dk.



Steepest Descent: This choice of search direction was already

motivated and discussed in Example 2 of Lecture 2:

dk = −∇f(xk).

• Intuitively appealing.

• Easy to apply, −∇f(xk) ”cheap” to compute.

• θ(−∇f(xk), dk) ≡ 0 in this case, and Theorem 2 of Lecture 2

implies convergence.



Regrettably, the method has major disadvantages:

• Badly affected by round-off errors.

• Badly affected by ill-conditioning, convergence can be excru-

ciatingly slow due to excessive zig-zagging.

To illustrate this, let x∗ be a strict local minimiser of f and sup-

pose that the sufficient first and second order optimality condi-

tions hold, i.e.,

∇f(x∗) = 0, D2f(x∗) � 0.



The second condition implies that the ordered eigenvalues of

D2f(x∗) satisfy

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

The ratio κ := λ1
λn

is called the condition number of D2f(x∗). If

κ is large, then x∗ lies in a ”long narrow valley” of f .

Once the steepest descent method enters this valley, it just

bounces back and forth without making much progress when

κ is large:



Proposition 1: Let x0 be a starting point and let the sequence

(xk)N be produced by

xk+1 = xk − αk∇f(xk),

where αk corresponds to an exact line-search (see Lecture 2).

Then

‖xk+1 − x∗‖ '
κ − 1

κ + 1
‖xk − x∗‖

for all k large.



Coordinate Search: This method is even simpler, as the search

direction cycles through the coordinate axes:

dk = ei, i ≡ 1 + k mod n.

• Even cheaper, as dk does not have to be computed at all.

• Convergence even worse than steepest descent.



Newton Methods: This approach is motivated by the first or-

der necessary optimality condition ∇f(x∗) = 0 and works when

D2f(x) is non-singular for x in a neighbourhood of x∗.

• Idea: replace the nonlinear root-finding problem ∇f(x) = 0

by a sequence of linear problems which are easy to solve.

• Linearisation: given xk, the first order Taylor approximation

x 7→ ϕ(x) = ∇f(xk) + D2f(xk)(x − xk),

approximates the nonlinear (vector valued) function x 7→

∇f(x) well in a neighbourhood of xk.



• Therefore, if xk is close to x∗, then it is reasonable to expect

that the solution

xk+1 = xk −
(

D2f(xk)
)−1

∇f(xk)

of the linearised system of equations ϕ(x) = 0 lies even closer

to x∗.

• nf(xk) := −
(

D2f(xk)
)−1

∇f(xk) is called the Newton direc-

tion.



Newton-Raphson method: given a starting point x0, apply exact

Newton steps

xk+1 = xk + nf(xk).

• nf(x) is a descent direction when D2f(x) � 0:

〈nf(x),∇f(x)〉 = −(∇f(x))T
(

D2f(xk)
)−1

∇f(xk) < 0,

since D2f(x) � 0 ⇒ (D2f(x))−1 � 0. In particular, this

happens when f is strictly convex (see Lecture 1).

• If D2f(x) 6� 0 then nf(x) may not be a descent direction and

the method may converge to any point where ∇f(x) = 0,

which could be a minimiser, maximiser or saddle point.



• Examples can be constructed on which the method cycles

through a finite number of points, that is, xk+j = xk for

some k, j ∈ N, and the method does not converge.

• However, when x0 is chosen sufficiently close to x∗ where the

first and second order optimality conditions for a minimiser

hold, then the convergence is Q-quadratic, see Theorem 1

below.



Conclusions:

• Newton’s method is great for the minimisation of convex

problems (or the maximisation of concave problems).

• Since f is typically strictly convex in a neighbourhood of a

local minimiser x∗, it is great to switch to Newton’s method

in the final phase of an algorithm that otherwise relies on a

line-search descent method.



Dampened Newton method:

• Uses the following search direction in Algorithm 1,

dk =







nf(xk) if 〈nf(xk),∇f(xk)〉 < 0,

−nf(xk) otherwise.

• the line-search step length αk should asymptotically become

1 (i.e., full Newton step taken) if the fast convergence rate

of the Newton-Raphson method is to be picked up.



Example 1: Linear Programming. Consider the linear pro-

gramming problem

max
x∈Rn

cTx

s.t. Ax ≤ b,

x ≥ 0.

Here A ∈ Rm×n (a m× n matrix with linearly independent rows),

b ∈ Rm and c ∈ Rn are all given, and x ∈ Rn is the vector of

decision variables.

Let µ > 0 and e :=
[

1 ... 1

]T
.



At the heart of interior-point methods for linear programming

lies the solution of the nonlinear system of equations

Ax = b (1)

ATy + s = c (2)

XSe = µe (3)

x, s > 0, (4)

where x, s ∈ Rn, y ∈ Rm, X = Diag(x) and S = Diag(s) are the

diagonal matrices with x and s on their diagonals, and where

x, s > 0 means that both vectors have to be component-wise

strictly positive.



It can be shown that the system (1)-(4) has a unique solution

(x∗, y∗, s∗).

Given a current approximate solution (x, y, s) such that x, s > 0,

we can compute a Newton step (∆x,∆y,∆s) for the uncon-

strained system (1)-(3) which is obtained by solving the linearised

system of equations

A∆x = b − Ax

AT∆y + ∆s = c − ATy − s

S∆x + X∆s = µe − XSe.



In order to guarantee that (4) continues to be satisfied, we use

(∆x,∆y,∆s) as a search direction and determine an updated

approximate solution (x+, y+, s+) as follows:

α∗ = sup{α > 0 : x + α∆x > 0, s + α∆s > 0},

(x+, y+, s+) = (x, y, s) + min(1,0.99α∗)(∆x,∆y,∆s).

It can be shown that the resulting sequence of intermediate so-

lutions converges very efficiently to (x∗, y∗, s∗).



Theorem 1: Convergence of Newton-Raphson.

Let f ∈ C2(Rn, R) with Λ-Lipschitz continuous Hessian. Let

x∗ ∈ Rn be such that ∇f(x∗) = 0 and D2f(x∗) nonsingular. Then

there exists a neighbourhood Bρ(x∗) with the property that x0 ∈

Bρ(x∗) implies xk ∈ Bρ(x∗) for all k, and xk → x∗ Q-quadratically.



Proof:

• D2f(x∗) nonsingular, x 7→ D2f(x) continuous ⇒ ∃ρ̄ > 0 such

that D2f(x) nonsingular for all x ∈ Bρ̄(x
∗) and nf(x) well-

defined.

• Moreover, x 7→ (D2f(x))−1 is continuous, thus can choose ρ̄

sufficiently small so that

‖(D2f(x))−1‖ ≤ 2‖(D2f(x∗))−1‖ =: β. (5)

• The Newton update implies

(xk+1 − x∗) = (xk − x∗) − (D2f(xk))
−1∇f(xk). (6)



• Using ∇f(x∗) = 0, find

∇f(xk) = ∇f(xk)−∇f(x∗) =

∫ 1

t=0
D2f(tx∗+(1−t)xk)(xk−x∗)dt

• Substituting into (6),

(xk+1 − x∗) =
(

D2f(xk)
)−1

S (xk − x∗), (7)

where

S := D2f(xk) −
∫ 1

t=0
D2f(tx∗ + (1 − t)xk)dt

=
∫ 1

t=0
D2f(xk) − D2f(tx∗ + (1 − t)xk)dt.

• Taking norms on both sides of (7),

‖xk+1 − x∗‖ ≤ ‖(D2f(xk))
−1‖ × ‖S‖ × ‖xk − x∗‖. (8)



• Lipschitz continuity of D2f implies

‖S‖ ≤
∫ 1

t=0
‖D2f(xk) − D2f(tx∗ + (1 − t)xk)‖dt

≤
∫ 1

t=0
Λt‖xk − x∗‖dt =

Λ

2
‖xk − x∗‖.

• Substituting this and (5) in (8),

‖xk+1 − x∗‖ ≤
βΛ

2
‖xk − x∗‖2. (9)

• Finally, for ρ := min(ρ̄,2(βΛ)−1), (9) shows that

xk ∈ Bρ(x
∗) ⇒ xk ∈ Bρ(x

∗),

so that the entire sequence (xk)N is well defined as long as

x0 ∈ Bρ(x∗).



Reading Assignment: Download and read Lecture-Note 3.

Note: From now on all lectures are in Comlab 147.


