
Quasi-Newton Methods

Lecture 4, Continuous Optimisation

Oxford University Computing Laboratory, HT 2006

Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)



Recall from Lecture 3

Steepest-descent direction dk := −∇f(xk).

• Takes ' n function evaluations (of f) to compute.

• Q-linear convergence.



Newton-Raphson direction dk = nf(xk) := −
(

D2f(xk)
)−1

∇f(xk).

• Takes ' n function evaluations to compute ∇f(xk) and ' n2

function evaluations to compute D2f(xk).

• Once these matrices have been computed it takes O(n3)

computer operations to solve the following linear system for

dk,

D2f(xk) dk = −∇f(xk).

• Q-quadratic convergence.



Ideally, one would like a search-direction that combines the cheap-

ness of −∇f(xk) with the fast convergence of nf(xk).

In reality, we need to strike a balance between work per iteration

and convergence speed.

Quasi-Newton methods are clever mechanisms that achieve such

a balance.



Let C(f) be the cost of one function evaluation of f . Then the

following shows the trade-off between computational cost and

convergence speed,

cost per iteration convergence rate

Steepest descent O
(

nC(f)
)

Q-linear

Quasi-Newton O
(

n2 + nC(f)
)

Q-superlinear

Newton-Raphson O
(

n3 + n2C(f)
)

Q-quadratic



Motivation of Quasi-Newton Updates:

The Newton-Raphson step is defined by

xk+1 − xk = nf(xk) = −
(

D2f(xk)
)−1

∇f(xk).

Assume an approximation Bk ≈ D2f(xk) of the Hessian is avail-

able. Then an approximate Newton-Raphson step is given by

the quasi-Newton update

dk = −B−1
k ∇f(xk).

This update is well-defined when Bk is nonsingular, and in par-

ticular when Bk is positive definite symmetric.



In this case the update is also motivated by the fact that

xk + dk = xk − B−1
k ∇f(xk).

is the global minimiser of the following quadratic model of f ,

p(x) = f(xk) + 〈∇f(xk), x − xk〉 +
1

2
(x − xk)

TBk(x − xk).



• Bk is only an approximation of D2f(xk). Therefore we use

dk as a search direction rather than an exact update.

• A line-search then yields a new quasi-Newton iterate

xk+1 = xk + αkdk.

• Q-N algorithms specify methods for cheaply computing a new

approximate Hessian Bk+1 ' D2f(xk+1). This computation

should only use the quantities Bk,∇f(xk) and ∇f(xk+1).



Algorithm 1: Generic Quasi-Newton Method.

S0 Choose a starting point x0 ∈ Rn, a nonsingular B0 ∈ Sn (often

the choice is B0 = I), and a termination tolerance ε > 0. Set

k = 0.

S1 If ‖∇f(xk)‖ ≤ ε then stop and output xk as an approximate

local minimiser of f . Else go to S2.

S2 Compute the quasi-Newton search direction dk = −B−1
k ∇f(xk).



S3 Perform a practical line-search for the minimisation of φ(α) =

f(xk + αdk): find a step length αk that satisfies the Wolfe

conditions and compute the new iterate xk+1 = xk + αkdk.

S4 Compute the new approximate Hessian Bk+1 according to

the specified rule.

S5 Replace k by k + 1 and go to S1.



A Wish List of Properties of Bk

P1: Bk should be nonsingular, so that S2 is well-defined.

P2: Bk should be such that dk is a descent direction, so that S3

is well-defined.

P3: Bk should be symmetric, as Hessians are symmetric matrices.



Properties P1–P3 can be satisfied by requiring that Bk be pos-

itive definite symmetric: P1 and P3 are trivially true, and P2

follows from

〈∇f(xk), dk〉 = −∇f(xk)
TB−1

k ∇f(xk) < 0,

unless ∇f(xk) = 0.

This also avoids that the quasi-Newton method gets attracted

to any point but a local minimiser.

Question: Is this a problem when D2f(xk) 6� 0?



The wish-list continues . . .

P4: Bk+1 should be computable by “recycling” the quantities

∇f(xk+1),∇f(xk), . . . ,∇f(x0), dk, αk and possibly Bk.

Crucial observation: the gradient change

γk := ∇f(xk+1) −∇f(xk)

yields information about the Hessian change D2f(xk+1)−D2f(xk).

Let δk := αkdk be the chosen update.



The search direction dk was motivated by the fact that the gra-

dient change predicted by the quadratic model

p(x) = f(xk) + 〈∇f(xk), x − xk〉 +
1

2
(x − xk)

TBk(x − xk)

is

∇f(xk + dk) −∇f(xk) ≈ ∇p(xk + dk) −∇p(xk)

= ∇f(xk) + Bkdk −∇f(xk)

= −∇f(xk). (1)

In other words, it is predicted that xk + dk is exactly a stationary

point of f .



But p is only a locally valid model of f and the new iterate xk+1

is obtained via a line search.

The true gradient change

γk = ∇f(xk+1) −∇f(xk)

differs from the prediction (1).



A clever way to incorporate γk into the Hessian approximations

is to choose Bk+1 so that the quadratic model

h(x) = f(xk) + 〈∇f(xk), (x − xk)〉 +
1

2
(x − xk)Bk+1(x − x)

would have correctly predicted the observed gradient change:

γk = ∇f(xk+1)−∇f(xk) = ∇h(xk+1)−∇h(xk) = ∇f(xk)+Bk+1δk−∇f(xk).

In other words, Bk+1 should be chosen such that

Bk+1δk = γk (2)

holds true. (2) is called the secant condition.



The wish-list continues . . .

P5: Bk+1 should be close to Bk in a well-defined sense, so that

Bk can converge to D2f(x∗) and dk is allowed to become the

Newton-Raphson step asymptotically.

A straightforward idea to define a notion of closeness is by use

of a matrix norm: d(Bk+1, Bk) = ‖Bk+1 − Bk‖.

However, it is often more useful to characterise closeness by

keeping the rank of Bk+1 − Bk as low as possible.



Low rank updates will automatically guarantee that the last prop-

erty on our wish list is satisfied as well:

P6: The choice of Bk should be such that the overall work per it-

eration is at most of order O(n2), to gain a substantial speed-

up over the O(n3) computer operations needed to perform a

Newton-Raphson step.



Symmetric Rank-1 Updates (SR1)

The method we are about to describe satisfies some but not all

of the properties P1–P6.

P3 and P5 can be satisfied by requiring that Bk+1 is a rank-1

update of Bk: we want to select some vector u and set

Bk+1 = Bk + uuT. (3)

If B0 is symmetric, this guarantees that Bk is symmetric for all

k, and rank(Bk+1 − Bk) = 1.



The choice of u is fixed when P4 is satisfied through the secant

condition

Bk+1δk = γk, (4)

where δk = xk+1 − xk = αkdk and γk = ∇f(xk+1) − ∇f(xk) as

before.

Multiplying (3) by δk and substituting the result into (4), we find

(uTδk)u = γk − Bkδk. (5)

Multiplying the transpose of this equation by δk, we obtain

(uTδk)
2 = (γk − Bkδk)

Tδk. (6)



Equation (5) shows that

u =
γk − Bkδk

uTδk

.

Therefore, (3) and (6) imply that the updating rule should be

as follows,

Bk+1 = Bk +
(γk − Bkδk)(γk − Bkδk)

T

(uTδk)
2

= Bk +
(γk − Bkδk)(γk − Bkδk)

T

(γk − Bkδk)
Tδk

. (7)

Note that since γk = ∇f(xk+1) − ∇f(xk) and δk = αkdk, we

can compute the SR1 update from the “recycled” information

referred to in P4.



When Bk+1 is computed via the updating rule (7) Algorithm 1

is called the symmetric rank 1 method (or SR1).

This method was independently suggested by Broyden, David-

son, Fiacco-McCormick, Murtagh-Sargent, and Wolfe in 1967-

69.

The updates of the SR1 method are very simple to compute, but

they have the drawback that Bk is not always positive definite

and dk might not always be defined or be a descent direction.

Moreover, (γk−Bkδk)
Tδ can be close to zero which leads to very

large updates.



What about property P6?

• Once dk is known, computing αk, xk+1,∇f(xk+1), γk and δk

is very cheap.

• The total work for computing the updated matrix Bk+1 from

Bk and dk is of order O(n2).

• However, in order to compute dk we need to solve the linear

system of equations

Bkdk = −∇f(xk), (8)

which takes O(n3) time!



A way out of the dilemma . . .

Theorem 1: Sherman–Morrison–Woodbury formula. If B ∈

Rn×n and U, V ∈ Rn×p are matrices then

(B + UV T)−1 = B−1 − B−1U(I + V TB−1U)−1V TB−1.

See the new problem set for a proof.



The usefulness of this formula is quickly understood:

• Suppose we knew Hk = B−1
k . Then, applying the Sherman-

Morrison-Woodbury formula to B+ = Bk+1, B = Bk, U =

u = (γk −Bkδk) and V = UT (that is, p = 1 in this case), we

find

Hk+1 = (B+)−1

= B−1 − B−1u
(

1 + uTB−1u
)−1

uTB−1

= Hk +
(δk − Hkγk)(δk − Hkγk)

T

(δk − Hkγk)
Tγk

.



• Thus, Hk+1 is just a rank 1 update of Hk.

• Since we assumed Hk known, computing dk = −Hk∇f(xk)

now takes only O(n2) work.

• Furthermore, Hk+1 is computed from Hk in O(n2) time.



If the algorithm is started with B0 = I, then H0 = I is known,

and every iteration takes O(n2) work. Bk need not be formed.

It is possible to analyse the local convergence of the SR1 method

and show that the method converges superlinearly in a neigh-

bourhood of a local minimiser of f .

Thus, if the SR1 method is properly implemented, it can com-

bine convergence speeds similar to those of the Newton-Raphson

method with a lower complexity.

However, Bk is not guaranteed to stay positive definite, so P2 is

not satisfied!



The Broyden-Fletcher-Goldfarb-Shanno Method:

BFGS updates are defined by

Bk+1 = Bk +
BkδkδTk Bk

δTk Bkδk

+
γkγT

k

γT
k δk

.

• Rank-2 updates.

• Has all the properties of SR1, but stays positive definite if
B0 � 0.

• The most successful and widely used quasi-Newton method.

• Motivation more difficult, see Lecture Notes 4.



Reading Assignment: Download and read Lecture-Note 4.


