Quasi-Newton Methods

Lecture 4, Continuous Optimisation
Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Recall from Lecture 3

Steepest-descent direction $d_{k}:=-\nabla f\left(x_{k}\right)$.

- Takes $\simeq n$ function evaluations (of f) to compute.
- Q-linear convergence.

Newton-Raphson direction $d_{k}=n_{f}\left(x_{k}\right):=-\left(D^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$.

- Takes $\simeq n$ function evaluations to compute $\nabla f\left(x_{k}\right)$ and $\simeq n^{2}$ function evaluations to compute $D^{2} f\left(x_{k}\right)$.
- Once these matrices have been computed it takes $O\left(n^{3}\right)$ computer operations to solve the following linear system for d_{k},

$$
D^{2} f\left(x_{k}\right) d_{k}=-\nabla f\left(x_{k}\right) .
$$

- Q-quadratic convergence.

Ideally, one would like a search-direction that combines the cheapness of $-\nabla f\left(x_{k}\right)$ with the fast convergence of $n_{f}\left(x_{k}\right)$.

In reality, we need to strike a balance between work per iteration and convergence speed.

Quasi-Newton methods are clever mechanisms that achieve such a balance.

Let $\mathcal{C}(f)$ be the cost of one function evaluation of f. Then the following shows the trade-off between computational cost and convergence speed,

	cost per iteration	convergence rate
Steepest descent	$O(n \mathcal{C}(f))$	Q-linear
Quasi-Newton	$O\left(n^{2}+n \mathcal{C}(f)\right)$	Q-superlinear
Newton-Raphson	$O\left(n^{3}+n^{2} \mathcal{C}(f)\right)$	Q-quadratic

Motivation of Quasi-Newton Updates:

The Newton-Raphson step is defined by

$$
x_{k+1}-x_{k}=n_{f}\left(x_{k}\right)=-\left(D^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)
$$

Assume an approximation $B_{k} \approx D^{2} f\left(x_{k}\right)$ of the Hessian is available. Then an approximate Newton-Raphson step is given by the quasi-Newton update

$$
d_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

This update is well-defined when B_{k} is nonsingular, and in particular when B_{k} is positive definite symmetric.

In this case the update is also motivated by the fact that

$$
x_{k}+d_{k}=x_{k}-B_{k}^{-1} \nabla f\left(x_{k}\right) .
$$

is the global minimiser of the following quadratic model of f,

$$
p(x)=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left(x-x_{k}\right)^{\top} B_{k}\left(x-x_{k}\right) .
$$

- B_{k} is only an approximation of $D^{2} f\left(x_{k}\right)$. Therefore we use d_{k} as a search direction rather than an exact update.
- A line-search then yields a new quasi-Newton iterate

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k} .
$$

- Q-N algorithms specify methods for cheaply computing a new approximate Hessian $B_{k+1} \simeq D^{2} f\left(x_{k+1}\right)$. This computation should only use the quantities $B_{k}, \nabla f\left(x_{k}\right)$ and $\nabla f\left(x_{k+1}\right)$.

Algorithm 1: Generic Quasi-Newton Method.

S0 Choose a starting point $x_{0} \in \mathbb{R}^{n}$, a nonsingular $B_{0} \in S^{n}$ (often the choice is $B_{0}=I$), and a termination tolerance $\epsilon>0$. Set $k=0$.

S1 If $\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon$ then stop and output x_{k} as an approximate local minimiser of f. Else go to $\mathbf{S} 2$.
$\mathbf{S} 2$ Compute the quasi-Newton search direction $d_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)$.

S3 Perform a practical line-search for the minimisation of $\phi(\alpha)=$ $f\left(x_{k}+\alpha d_{k}\right)$: find a step length α_{k} that satisfies the Wolfe conditions and compute the new iterate $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.

S4 Compute the new approximate Hessian B_{k+1} according to the specified rule.

S5 Replace k by $k+1$ and go to $\mathbf{S 1}$.

A Wish List of Properties of B_{k}

P1: B_{k} should be nonsingular, so that $\mathbf{S} 2$ is well-defined.

P2: B_{k} should be such that d_{k} is a descent direction, so that S3 is well-defined.

P3: B_{k} should be symmetric, as Hessians are symmetric matrices.

Properties $\mathrm{P} 1-\mathrm{P} 3$ can be satisfied by requiring that B_{k} be positive definite symmetric: P1 and P3 are trivially true, and P2 follows from

$$
\left\langle\nabla f\left(x_{k}\right), d_{k}\right\rangle=-\nabla f\left(x_{k}\right)^{\top} B_{k}^{-1} \nabla f\left(x_{k}\right)<0
$$

unless $\nabla f\left(x_{k}\right)=0$.

This also avoids that the quasi-Newton method gets attracted to any point but a local minimiser.

Question: Is this a problem when $D^{2} f\left(x_{k}\right) \nsucc 0$?

The wish-list continues ...

P4: B_{k+1} should be computable by "recycling" the quantities

$$
\nabla f\left(x_{k+1}\right), \nabla f\left(x_{k}\right), \ldots, \nabla f\left(x_{0}\right), d_{k}, \alpha_{k} \text { and possibly } B_{k}
$$

Crucial observation: the gradient change

$$
\gamma_{k}:=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

yields information about the Hessian change $D^{2} f\left(x_{k+1}\right)-D^{2} f\left(x_{k}\right)$.

Let $\delta_{k}:=\alpha_{k} d_{k}$ be the chosen update.

The search direction d_{k} was motivated by the fact that the gradient change predicted by the quadratic model

$$
p(x)=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left(x-x_{k}\right)^{\top} B_{k}\left(x-x_{k}\right)
$$

is

$$
\begin{align*}
\nabla f\left(x_{k}+d_{k}\right)-\nabla f\left(x_{k}\right) & \approx \nabla p\left(x_{k}+d_{k}\right)-\nabla p\left(x_{k}\right) \\
& =\nabla f\left(x_{k}\right)+B_{k} d_{k}-\nabla f\left(x_{k}\right) \\
& =-\nabla f\left(x_{k}\right) . \tag{1}
\end{align*}
$$

In other words, it is predicted that $x_{k}+d_{k}$ is exactly a stationary point of f.

But p is only a locally valid model of f and the new iterate x_{k+1} is obtained via a line search.

The true gradient change

$$
\gamma_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

differs from the prediction (1).

A clever way to incorporate γ_{k} into the Hessian approximations is to choose B_{k+1} so that the quadratic model

$$
h(x)=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right),\left(x-x_{k}\right)\right\rangle+\frac{1}{2}\left(x-x_{k}\right) B_{k+1}(x-x)
$$

would have correctly predicted the observed gradient change:
$\gamma_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)=\nabla h\left(x_{k+1}\right)-\nabla h\left(x_{k}\right)=\nabla f\left(x_{k}\right)+B_{k+1} \delta_{k}-\nabla f\left(x_{k}\right.$ In other words, B_{k+1} should be chosen such that

$$
\begin{equation*}
B_{k+1} \delta_{k}=\gamma_{k} \tag{2}
\end{equation*}
$$

holds true. (2) is called the secant condition.

The wish-list continues ...

P5: B_{k+1} should be close to B_{k} in a well-defined sense, so that B_{k} can converge to $D^{2} f\left(x^{*}\right)$ and d_{k} is allowed to become the Newton-Raphson step asymptotically.

A straightforward idea to define a notion of closeness is by use of a matrix norm: $d\left(B_{k+1}, B_{k}\right)=\left\|B_{k+1}-B_{k}\right\|$.

However, it is often more useful to characterise closeness by keeping the rank of $B_{k+1}-B_{k}$ as low as possible.

Low rank updates will automatically guarantee that the last property on our wish list is satisfied as well:

P6: The choice of B_{k} should be such that the overall work per iteration is at most of order $O\left(n^{2}\right)$, to gain a substantial speedup over the $O\left(n^{3}\right)$ computer operations needed to perform a Newton-Raphson step.

Symmetric Rank-1 Updates (SR1)

The method we are about to describe satisfies some but not all of the properties P1-P6.

P3 and P5 can be satisfied by requiring that B_{k+1} is a rank-1 update of B_{k} : we want to select some vector u and set

$$
\begin{equation*}
B_{k+1}=B_{k}+u u^{\top} . \tag{3}
\end{equation*}
$$

If B_{0} is symmetric, this guarantees that B_{k} is symmetric for all k, and $\operatorname{rank}\left(B_{k+1}-B_{k}\right)=1$.

The choice of u is fixed when P4 is satisfied through the secant condition

$$
\begin{equation*}
B_{k+1} \delta_{k}=\gamma_{k}, \tag{4}
\end{equation*}
$$

where $\delta_{k}=x_{k+1}-x_{k}=\alpha_{k} d_{k}$ and $\gamma_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$ as before.

Multiplying (3) by δ_{k} and substituting the result into (4), we find

$$
\begin{equation*}
\left(u^{\top} \delta_{k}\right) u=\gamma_{k}-B_{k} \delta_{k} . \tag{5}
\end{equation*}
$$

Multiplying the transpose of this equation by δ_{k}, we obtain

$$
\begin{equation*}
\left(u^{\top} \delta_{k}\right)^{2}=\left(\gamma_{k}-B_{k} \delta_{k}\right)^{\top} \delta_{k} . \tag{6}
\end{equation*}
$$

Equation (5) shows that

$$
u=\frac{\gamma_{k}-B_{k} \delta_{k}}{u^{\top} \delta_{k}}
$$

Therefore, (3) and (6) imply that the updating rule should be as follows,

$$
\begin{align*}
B_{k+1} & =B_{k}+\frac{\left(\gamma_{k}-B_{k} \delta_{k}\right)\left(\gamma_{k}-B_{k} \delta_{k}\right)^{\top}}{\left(u^{\top} \delta_{k}\right)^{2}} \\
& =B_{k}+\frac{\left(\gamma_{k}-B_{k} \delta_{k}\right)\left(\gamma_{k}-B_{k} \delta_{k}\right)^{\top}}{\left(\gamma_{k}-B_{k} \delta_{k}\right)^{\top} \delta_{k}} \tag{7}
\end{align*}
$$

Note that since $\gamma_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$ and $\delta_{k}=\alpha_{k} d_{k}$, we can compute the SR1 update from the "recycled" information referred to in P4.

When B_{k+1} is computed via the updating rule (7) Algorithm 1 is called the symmetric rank 1 method (or SR1).

This method was independently suggested by Broyden, Davidson, Fiacco-McCormick, Murtagh-Sargent, and Wolfe in 196769.

The updates of the SR1 method are very simple to compute, but they have the drawback that B_{k} is not always positive definite and d_{k} might not always be defined or be a descent direction.

Moreover, $\left(\gamma_{k}-B_{k} \delta_{k}\right)^{\top} \delta$ can be close to zero which leads to very large updates.

What about property P6?

- Once d_{k} is known, computing $\alpha_{k}, x_{k+1}, \nabla f\left(x_{k+1}\right), \gamma_{k}$ and δ_{k} is very cheap.
- The total work for computing the updated matrix B_{k+1} from B_{k} and d_{k} is of order $O\left(n^{2}\right)$.
- However, in order to compute d_{k} we need to solve the linear system of equations

$$
\begin{equation*}
B_{k} d_{k}=-\nabla f\left(x_{k}\right), \tag{8}
\end{equation*}
$$

which takes $O\left(n^{3}\right)$ time!

A way out of the dilemma ...

Theorem 1: Sherman-Morrison-Woodbury formula. If $B \in$ $\mathbb{R}^{n \times n}$ and $U, V \in \mathbb{R}^{n \times p}$ are matrices then

$$
\left(B+U V^{\top}\right)^{-1}=B^{-1}-B^{-1} U\left(I+V^{\top} B^{-1} U\right)^{-1} V^{\top} B^{-1}
$$

See the new problem set for a proof.

The usefulness of this formula is quickly understood:

- Suppose we knew $H_{k}=B_{k}^{-1}$. Then, applying the Sherman-Morrison-Woodbury formula to $B_{+}=B_{k+1}, B=B_{k}, U=$ $u=\left(\gamma_{k}-B_{k} \delta_{k}\right)$ and $V=U^{\top}$ (that is, $p=1$ in this case), we find

$$
\begin{aligned}
H_{k+1} & =\left(B_{+}\right)^{-1} \\
& =B^{-1}-B^{-1} u\left(1+u^{\top} B^{-1} u\right)^{-1} u^{\top} B^{-1} \\
& =H_{k}+\frac{\left(\delta_{k}-H_{k} \gamma_{k}\right)\left(\delta_{k}-H_{k} \gamma_{k}\right)^{\top}}{\left(\delta_{k}-H_{k} \gamma_{k}\right)^{\top} \gamma_{k}} .
\end{aligned}
$$

- Thus, H_{k+1} is just a rank 1 update of H_{k}.
- Since we assumed H_{k} known, computing $d_{k}=-H_{k} \nabla f\left(x_{k}\right)$ now takes only $O\left(n^{2}\right)$ work.
- Furthermore, H_{k+1} is computed from H_{k} in $O\left(n^{2}\right)$ time.

If the algorithm is started with $B_{0}=\mathrm{I}$, then $H_{0}=\mathrm{I}$ is known, and every iteration takes $O\left(n^{2}\right)$ work. B_{k} need not be formed.

It is possible to analyse the local convergence of the SR1 method and show that the method converges superlinearly in a neighbourhood of a local minimiser of f.

Thus, if the SR1 method is properly implemented, it can combine convergence speeds similar to those of the Newton-Raphson method with a lower complexity.

However, B_{k} is not guaranteed to stay positive definite, so P2 is not satisfied!

The Broyden-Fletcher-Goldfarb-Shanno Method:

$B F G S$ updates are defined by

$$
B_{k+1}=B_{k}+\frac{B_{k} \delta_{k} \delta_{k}^{\top} B_{k}}{\delta_{k}^{\top} B_{k} \delta_{k}}+\frac{\gamma_{k} \gamma_{k}^{\top}}{\gamma_{k}^{\top} \delta_{k}}
$$

- Rank-2 updates.
- Has all the properties of SR1, but stays positive definite if $B_{0} \succ 0$.
- The most successful and widely used quasi-Newton method.
- Motivation more difficult, see Lecture Notes 4.

Reading Assignment: Download and read Lecture-Note 4.

