
Trust Region Methods

Lecture 6, Continuous Optimisation

Oxford University Computing Laboratory, HT 2006

Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

All unconstrained optimisation methods we discussed so far in

this course are based on line-searches

min
α>0

f(xk + αdk),

where dk is a descent direction.

In each iteration one replaces the n-dimensional minimisation

problem

min
x∈Rn

f(x)

by a simpler one-dimensional minimisation problem.

Trust region methods constitute a second fundamental class of

algorithms.

• In iteration k, replace f(x) by a locally valid quadratic model

function mk(x) (recall that we already encountered this idea

in the context of quasi-Newton methods).

• Choose a neighbourhood Rk of the current iterate xk in which

mk(x) can be trusted to approximate f well (we do not care

about how well mk approximates f outside Rk).

• The next iterate xk+1 is found by approximately minimising

the model function over the trust region,

xk+1 ≈ arg min
x∈Rk

mk(x).

Note: we replace the unconstrained optimisation problem

min
x∈Rn

f(x)

by the constrained trust region subproblem (to be approximately

solved)

xk+1 ≈ arg min
x∈Rk

mk(x). (1)

This is worthwhile because (1) can be solved cheaply when

mk(x) = f(xk) +∇f(xk)
T(x− xk) +

1

2
(x− xk)

TBk(x− xk) (2)

is a quadratic function, see Lecture 7.



The linear part of mk(x) coincides with the first order Taylor

approximation of f(x).

mk(x) will closely match the second order Taylor approximation

of f(x) when Bk ≈ D2f(xk).

To make the method work, we will thus have to worry about

how to update Bk cheaply.

But note that the quasi-Newton Hessian approximations dis-

cussed in Lecture 5 are perfect for this job!

Accepting and Rejecting Updates:

Let yk+1 be the approximate minimiser of the trust region sub-

problem.

In principle, this is the point we would like to select as our next

iterate xk+1.

However, yk+1 is computed on the basis of the model function

mk, and it could happen that moving to yk+1 leads to an increase

rather than decrease in of the true objective function f .

Trust-region methods therefore accept yk+1 only if the decrease

achieved in f is at least a fixed proportion of the decrease

”promised” by mk,

xk+1 =











yk+1 if
f(xk)−f(yk+1)

mk(xk)−mk(yk+1)
> η,

xk otherwise,
(3)

where η ∈ (0,1/4) is fixed.

Note that rejecting the update does not imply that the algorithm

will stall, because we can still shrink the trust region so that

yk+2 6= yk+1.

Updating the Trust Region:

The easiest way to define a trust region Rk is to choose the

closed ball of radius ∆k around xk in some norm ‖ · ‖,

Rk = {x ∈ R
n : ‖x− xk‖ ≤∆k}.

For simplicity, we will assume that ‖ · ‖ is the Euclidean norm.

∆k is called the trust region radius.

In order to define a new trust region Rk+1 around xk+1, it suffices

to fix a rule on how to select ∆k+1.



The following rule is a popular choice, where yk+1 is as above:

∆k+1 =























∆k
4 if

f(xk)−f(yk+1)

mk(xk)−mk(yk+1)
< 1

4,

min(2∆k,∆max) if
f(xk)−f(yk+1)

mk(xk)−mk(yk+1)
> 3

4,

∆k otherwise.

(4)

• ∆k never exceeds ∆max.

• If the actual decrease f(xk)− f(yk+1) was below our expec-

tations mk(xk)−mk(yk+1), this indicates that mk should be

regarded as a more local model than before. We thus find a

reasonable ∆k+1 by shrinking ∆k.

• If the actual decrease was above our expectations, we feel

confident to expand the trust region by selecting ∆k+1 as an

expansion of ∆k.

• If there is neither reason for gloom nor euphoria, we stick to

the previous value ∆k+1 = ∆k.

Algorithm 1: Generic Trust region Method. Choose
∆max > 0, ∆0 ∈ (0,∆max), η ∈ (0,1/4), x0 ∈ Rn, B0, ε > 0.

While ‖∇f(xk)‖ ≥ ε repeat

Compute yk+1 as the approximate minimiser of (1).

Determine xk+1 via (3).

Compute ∆k+1 using (4).

Build a new model function mk+1(x).

k ← k + 1.

end

The Cauchy Point:

In step S1 of the algorithm, the approximate minimiser yk+1 can

be computed in many different ways. Some of these methods

will be discussed in Lecture 7.

To derive a convergence result for Algorithm 1, we need to as-

sume that the method chosen for computing yk+1 compares

favourably to a specific benchmark.

The Cauchy point is obtained when a steepest descent line-

search is applied to mk at xk and is restricted to Rk.



An unrestricted line-search in the direction −∇f(xk) yields the

step-length multiplier

αu
k := argmin

α≥0
mk(xk − α∇f(xk))

= argmin
α≥0

f(xk)− α∇f(xk)
T∇f(xk) +

α2

2
∇f(xk)

TBk∇f(xk)

=











+∞ if ∇f(xk)
TBk∇f(xk) ≤ 0,

∇f(xk)
T∇f(xk)

∇f(xk)
TBk∇f(xk)

otherwise.

If we want to stay within Rk we have to ”clip” αu
k to a constrained

step-length multiplier αc
k.

Note that α 7→ mk(xk−α∇f(xk)) is strictly decreasing on [0, αu
k).

Moreover, the radius ‖xk − α∇f(xk)‖ is strictly increasing over

the same interval.

Therefore, the correct clipping rule is given by

αc
k = min

(

∆k

‖∇f(xk)‖
, αu

k

)

(5)

and the Cauchy point is

yc
k := xk − αc

k∇f(xk).

Theorem 1: Global Convergence of Algorithm 1. Let Algo-

rithm 1 be applied to the minimisation of f ∈ C2(Rn, R), and for

all k let yk+1 be computed such that mk(yk+1) ≤ mk(y
c
k) holds.

Let there exist β > 0 such that for all k, ‖Bk‖, ‖D
2f(xk)‖ ≤ β,

and finally, let ∆0 ≥ ε/(14β).

Then exactly one of two following alternatives occurs:

(i) The algorithm does not terminate, but limk→∞ f(xk) = −∞

and f is unbounded below.

(ii) The algorithm terminates in finite time, returning an approx-

imate minimiser.

Proof: If ‖∇f(xk)‖ < ε occurs for some k ∈ N then (ii) occurs.

We may therefore assume that ‖∇f(xk)‖ ≥ ε for all k and need

to show that f(xk)→ −∞.

The following claims will be proven in the notes and exercises.

C1: The update is accepted, i.e., xk+1 = yk+1 in (3), for infinitely

many k.

C2: Whenever xk+1 = yk+1 occurs, we have

f(xk+1)− f(xk) ≤ −ηε2/(28β).



Furthermore, the updating rule (3) guarantees that

f(xk+1)− f(xk) ≤ 0

for all k.

Therefore, Claim 1 and 2 imply

lim
k→∞

f(xk) =
∞
∑

k=0

f(xk+1)− f(xk) = −∞.

Lemma 1: Let ‖∇f(xk)‖ ≥ ε and ∆k < 2ε/(7β). Then

f(yk+1)− f(xk)

mk(yk+1)−mk(xk)
>

1

4
.

Proof: See Lecture Note 6.

Lemma 2: There are at most blog4
∆max7β

2ε c rejected updates

between successive accepted updates.

Proof: Suppose to the contrary that all updates yk+1 for k =

k0, k0 + 1, . . . , k0 + dlog4
∆max7β

2ε e =: k1 are rejected.

Then

∆k1
= ∆k0

4−(k1−k0) ≤
2ε

7β
,

By Lemma 1 yk1+1 is not rejected, contradicting the above as-

sumption.

Claim 1 is an immediate consequence of Lemma 2.

Reading Assignment: Lecture-Note 6.


