Trust Region Methods

Lecture 6, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

All unconstrained optimisation methods we discussed so far in this course are based on line-searches

$$
\min _{\alpha>0} f\left(x_{k}+\alpha d_{k}\right)
$$

where d_{k} is a descent direction.

In each iteration one replaces the n-dimensional minimisation problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

by a simpler one-dimensional minimisation problem.

Note: we replace the unconstrained optimisation problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

by the constrained trust region subproblem (to be approximately solved)

$$
\begin{equation*}
x_{k+1} \approx \arg \min _{x \in R_{k}} m_{k}(x) \tag{1}
\end{equation*}
$$

This is worthwhile because (1) can be solved cheaply when

$$
\begin{equation*}
m_{k}(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} B_{k}\left(x-x_{k}\right) \tag{2}
\end{equation*}
$$

is a quadratic function, see Lecture 7 .

The linear part of $m_{k}(x)$ coincides with the first order Taylor approximation of $f(x)$.
$m_{k}(x)$ will closely match the second order Taylor approximation of $f(x)$ when $B_{k} \approx D^{2} f\left(x_{k}\right)$.

To make the method work, we will thus have to worry about how to update B_{k} cheaply.

But note that the quasi-Newton Hessian approximations discussed in Lecture 5 are perfect for this job!

Trust-region methods therefore accept y_{k+1} only if the decrease achieved in f is at least a fixed proportion of the decrease " promised" by m_{k},

$$
x_{k+1}=\left\{\begin{array}{l}
y_{k+1} \text { if } \frac{f\left(x_{k}\right)-f\left(y_{k+1}\right)}{m_{k}\left(x_{k}\right)-m_{k}\left(y_{k+1}\right)}>\eta \tag{3}\\
x_{k} \text { otherwise }
\end{array}\right.
$$

where $\eta \in(0,1 / 4)$ is fixed.

Note that rejecting the update does not imply that the algorithm will stall, because we can still shrink the trust region so that $y_{k+2} \neq y_{k+1}$.

Accepting and Rejecting Updates:

Let y_{k+1} be the approximate minimiser of the trust region subproblem.

In principle, this is the point we would like to select as our next iterate x_{k+1}.

However, y_{k+1} is computed on the basis of the model function m_{k}, and it could happen that moving to y_{k+1} leads to an increase rather than decrease in of the true objective function f.

Updating the Trust Region:

The easiest way to define a trust region R_{k} is to choose the closed ball of radius Δ_{k} around x_{k} in some norm $\|\cdot\|$,

$$
R_{k}=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{k}\right\| \leq \Delta_{k}\right\}
$$

For simplicity, we will assume that $\|\cdot\|$ is the Euclidean norm. Δ_{k} is called the trust region radius.

In order to define a new trust region R_{k+1} around x_{k+1}, it suffices to fix a rule on how to select Δ_{k+1}.

The following rule is a popular choice, where y_{k+1} is as above:

$$
\Delta_{k+1}=\left\{\begin{array}{l}
\frac{\Delta_{k}}{4} \text { if } \frac{f\left(x_{k}\right)-f\left(y_{k+1}\right)}{m_{k}\left(x_{k}\right)-m_{k}\left(y_{k+1}\right)}<\frac{1}{4} \tag{4}\\
\min \left(2 \Delta_{k}, \Delta_{\max }\right) \text { if } \frac{f\left(x_{k}\right)-f\left(y_{k+1}\right)}{m_{k}\left(x_{k}\right)-m_{k}\left(y_{k+1}\right)}>\frac{3}{4} \\
\Delta_{k} \text { otherwise. }
\end{array}\right.
$$

Algorithm 1: Generic Trust region Method. Choose

$\Delta_{\max }>0, \Delta_{0} \in\left(0, \Delta_{\text {max }}\right), \eta \in(0,1 / 4), x_{0} \in \mathbb{R}^{n}, B_{0}, \epsilon>0$.

While $\left\|\nabla f\left(x_{k}\right)\right\| \geq \epsilon$ repeat
Compute y_{k+1} as the approximate minimiser of (1).
Determine x_{k+1} via (3).
Compute Δ_{k+1} using (4).
Build a new model function $m_{k+1}(x)$.

$$
k \leftarrow k+1
$$

- Δ_{k} never exceeds $\Delta_{\text {max }}$
- If the actual decrease $f\left(x_{k}\right)-f\left(y_{k+1}\right)$ was below our expectations $m_{k}\left(x_{k}\right)-m_{k}\left(y_{k+1}\right)$, this indicates that m_{k} should be regarded as a more local model than before. We thus find a reasonable Δ_{k+1} by shrinking Δ_{k}.
- If the actual decrease was above our expectations, we feel confident to expand the trust region by selecting Δ_{k+1} as an expansion of Δ_{k}.
- If there is neither reason for gloom nor euphoria, we stick to the previous value $\Delta_{k+1}=\Delta_{k}$.

The Cauchy Point:

In step $\mathbf{S 1}$ of the algorithm, the approximate minimiser y_{k+1} can be computed in many different ways. Some of these methods will be discussed in Lecture 7.

To derive a convergence result for Algorithm 1, we need to assume that the method chosen for computing y_{k+1} compares favourably to a specific benchmark.

The Cauchy point is obtained when a steepest descent linesearch is applied to m_{k} at x_{k} and is restricted to R_{k}.

An unrestricted line-search in the direction $-\nabla f\left(x_{k}\right)$ yields the step-length multiplier

$$
\begin{aligned}
\alpha_{k}^{u} & :=\arg \min _{\alpha \geq 0} m_{k}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right) \\
& =\arg \min _{\alpha \geq 0} f\left(x_{k}\right)-\alpha \nabla f\left(x_{k}\right)^{\top} \nabla f\left(x_{k}\right)+\frac{\alpha^{2}}{2} \nabla f\left(x_{k}\right)^{\top} B_{k} \nabla f\left(x_{k}\right) \\
& =\left\{\begin{array}{l}
+\infty \text { if } \nabla f\left(x_{k}\right)^{\top} B_{k} \nabla f\left(x_{k}\right) \leq 0, \\
\frac{\nabla f\left(x_{k}\right)^{\top} \nabla f\left(x_{k}\right)}{\nabla f\left(x_{k}\right)^{\top} B_{k} \nabla f\left(x_{k}\right)} \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

If we want to stay within R_{k} we have to " clip" α_{k}^{u} to a constrained step-length multiplier α_{k}^{c}.

Note that $\alpha \mapsto m_{k}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)$ is strictly decreasing on [0, $\left.\alpha_{k}^{u}\right)$.

Moreover, the radius $\left\|x_{k}-\alpha \nabla f\left(x_{k}\right)\right\|$ is strictly increasing over the same interval.

Therefore, the correct clipping rule is given by

$$
\begin{equation*}
\alpha_{k}^{c}=\min \left(\frac{\Delta_{k}}{\left\|\nabla f\left(x_{k}\right)\right\|}, \alpha_{k}^{u}\right) \tag{5}
\end{equation*}
$$

and the Cauchy point is

$$
y_{k}^{c}:=x_{k}-\alpha_{k}^{c} \nabla f\left(x_{k}\right)
$$

Proof: If $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$ occurs for some $k \in \mathbb{N}$ then (ii) occurs.

We may therefore assume that $\left\|\nabla f\left(x_{k}\right)\right\| \geq \epsilon$ for all k and need to show that $f\left(x_{k}\right) \rightarrow-\infty$.

The following claims will be proven in the notes and exercises.

C1: The update is accepted, i.e., $x_{k+1}=y_{k+1}$ in (3), for infinitely many k.

C2: Whenever $x_{k+1}=y_{k+1}$ occurs, we have

$$
f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq-\eta \epsilon^{2} /(28 \beta)
$$

Furthermore, the updating rule (3) guarantees that

$$
f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq 0
$$

for all k.

Therefore, Claim 1 and 2 imply

$$
\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\sum_{k=0}^{\infty} f\left(x_{k+1}\right)-f\left(x_{k}\right)=-\infty
$$

Lemma 2: There are at most $\left\lfloor\log _{4} \frac{\Delta \max 7 \beta}{2 \epsilon}\right\rfloor$ rejected updates between successive accepted updates

Proof: Suppose to the contrary that all updates y_{k+1} for $k=$ $k_{0}, k_{0}+1, \ldots, k_{0}+\left\lceil\log _{4} \frac{\Delta \max 7 \beta}{2 \epsilon}\right\rceil=: k_{1}$ are rejected.

Then

$$
\Delta_{k_{1}}=\Delta_{k_{0}} 4^{-\left(k_{1}-k_{0}\right)} \leq \frac{2 \epsilon}{7 \beta}
$$

By Lemma $1 y_{k_{1}+1}$ is not rejected, contradicting the above assumption.

Claim 1 is an immediate consequence of Lemma 2.

Lemma 1: Let $\left\|\nabla f\left(x_{k}\right)\right\| \geq \epsilon$ and $\Delta_{k}<2 \epsilon /(7 \beta)$. Then

$$
\frac{f\left(y_{k+1}\right)-f\left(x_{k}\right)}{m_{k}\left(y_{k+1}\right)-m_{k}\left(x_{k}\right)}>\frac{1}{4}
$$

Proof: See Lecture Note 6.

Reading Assignment: Lecture-Note 6.

