The Dogleg and Steihaug Methods

Lecture 7, Continuous Optimisation

Oxford University Computing Laboratory, HT 2005 Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

I. Choosing the Model Function

Trust-Region Newton Methods:

If the problem dimension is not too large, the choice

$$
B_{k}=D^{2} f\left(x_{k}\right)
$$

is reasonable and leads to the 2 nd order Taylor model

$$
m_{k}(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} D^{2} f\left(x_{k}\right)\left(x-x_{k}\right)
$$

Methods based on this choice of model function are called trustregion Newton methods.

In a neighbourhood of a strict local minimiser TR-Newton methods take the full Newton-Raphson step and have therefore Qquadratic convergence.

Variants of Trust-Region Methods:

0. Different choices of trust region R_{k}, for example using balls defined by the norms $\|\cdot\|_{1}$ or $\|\cdot\|_{\infty}$. Not further pursued.
I. Choosing the model function m_{k}. We chose

$$
m_{k}(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} B_{k}\left(x-x_{k}\right)
$$

Leaves choice in determining B_{k}. Further discussed below.
II. Approximate calculation of

$$
\begin{equation*}
y_{k+1} \approx \arg \min _{y \in R_{k}} m_{k}(y) \tag{1}
\end{equation*}
$$

Further discussed below.

Trust-region Newton methods are not simply the Newton-Raphson method with an additional step-size restriction!

- TR-Newton is a descent method, whereas this is not guaranteed for Newton-Raphson.
- In TR-Newton, usually $y_{k+1}-x_{k} \nsim-\left(D^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$, as y_{k+1} is not obtained via a line search but by optimising (1).
- In TR-Newton the update y_{k+1} is well-defined even when $D^{2} f\left(x_{k}\right)$ is singular.

Trust-Region Quasi-Newton Methods:

When the problem dimension n is large, the natural choice for the model function m_{k} is to use quasi-Newton updates for the approximate Hessians B_{k}.

Such methods are called trust-region quasi-Newton.

In a neighbourhood of a strict local minimiser TR-quasi-Newton methods take the full quasi-Newton step and have therefore Qsuperlinear convergence.

II. Solving the Trust-Region Subproblem

The Dogleg Method:

This method is very simple and cheap to compute, but it works only when $B_{k} \succ 0$. Therefore, BFGS updates for B_{k} are a good, but the method is not applicable for SR1 updates.

Motivation: let

$$
x(\Delta):=\arg \min _{\left\{x \in \mathbb{R}^{n}:\left\|x-x_{k}\right\| \leq \Delta\right\}} m_{k}(x)
$$

If $B_{k} \succ 0$ then $\Delta \mapsto x(\Delta)$ describes a curvilinear path from $x(0)=x_{k}$ to the exact minimiser of the unconstrained problem $\min _{x \in \mathbb{R}^{n}} m_{k}(x)$, that is, to the quasi-Newton point

$$
y_{k}^{q n}=x_{k}-B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

Differences between TR quasi-Newton and quasi-Newton linesearch:

- In TR-quasi-Newton $B_{k} \nsucc 0$ is no problem, whereas in quasiNewton line-search it prevents the quasi-Newton update $-B_{k}^{-1} \nabla f\left(x_{k}\right)$ from being a descent direction.
- In TR-Newton the update y_{k+1} is well-defined even when B_{k} is singular, while $-B_{k}^{-1} \nabla f\left(x_{k}\right)$ is not defined.
- In TR-quasi-Newton, usually $y_{k+1}-x_{k} \nsim-B_{k}^{-1} \nabla f\left(x_{k}\right)$, as y_{k+1} is not obtained via a line search but by optimising (1).

Idea:

- Replace the curvilinear path $\Delta \mapsto x(\Delta)$ by a polygonal path $\tau \mapsto y(\tau)$.
- Determine y_{k+1} as the minimiser of $m_{k}(y)$ among the points on the path $\{y(\tau): \tau \geq 0\}$.

The simplest and most interesting version of such a method works with a polygon consisting of just two line segments, which reminds some people of the leg of a dog.

The "knee" of this leg is located at the steepest descent minimiser $y_{k}^{u}=x_{k}-\alpha_{k}^{u} \nabla f\left(x_{k}\right)$, where α_{k}^{u} is as in Lecture 6.

In Lecture 6 we saw that unless x_{k} is a stationary point, we have

$$
y_{k}^{u}=x_{k}-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\nabla f\left(x_{k}\right)^{\top} B_{k} \nabla f\left(x_{k}\right)} \nabla f\left(x_{k}\right) .
$$

From y_{k}^{u} the dogleg path continues along a straight line segment to the quasi-Newton minimiser $y_{k}^{q n}$.

The dogleg path is thus described by

$$
y(\tau)= \begin{cases}x_{k}+\tau\left(y_{k}^{u}-x_{k}\right) & \text { for } \tau \in[0,1] \tag{2}\\ y_{k}^{u}+(1-\tau)\left(y_{k}^{q n}-y_{k}^{u}\right) & \text { for } \tau \in[1,2]\end{cases}
$$

Lemma 1: Let $B_{k} \succ 0$. Then
i) the model function m_{k} is strictly decreasing along the path $y(\tau)$,
ii) $\left\|y(\tau)-x_{k}\right\|$ is strictly increasing along the path $y(\tau)$,
iii) if $\Delta \geq\left\|B_{k}^{-1} \nabla f\left(x_{k}\right)\right\|$ then $y(\Delta)=y_{k}^{q n}$,
iv) if $\Delta \leq\left\|B_{k}^{-1} \nabla f\left(x_{k}\right)\right\|$ then $\left\|y(\Delta)-x_{k}\right\|=\Delta$,
v) the two paths $x(\Delta)$ and $y(\tau)$ have first order contact at x_{k}, that is, the derivatives at $\Delta=0$ are co-linear:

$$
\begin{array}{r}
\lim _{\Delta \rightarrow 0+} \frac{x(\Delta)-x_{k}}{\Delta}=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|} \sim \frac{-\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\nabla f\left(x_{k}\right)^{\top} B_{k} \nabla f\left(x_{k}\right)} \nabla f\left(x_{k}\right) \\
=\lim _{\tau \rightarrow 0+} \frac{y(\tau)-y(0)}{\tau}
\end{array}
$$

Proof: See Problem Set 4.

Algorithm 1: Dogleg Point.

compute $y_{k}^{q n}$
if $\left\|y_{k}^{q n}-x_{k}\right\| \leq \Delta_{k}$ stop with $y_{k+1}=y_{k}^{q n}$

Parts i) and ii) of the Lemma show that the dogleg minimiser y_{k+1} is easy to compute:

- If $y_{k}^{q n} \in R_{k}$ then $y_{k+1}=y_{k}^{q n}$.
- Otherwise y_{k+1} is the unique intersection point of the dogleg path with the trust-region boundary ∂R_{k}.
else begin

$$
\begin{aligned}
& \text { find } \tau^{*} \text { s.t. }\left\|y_{k}^{u}+\tau^{*}\left(y_{k}^{q n}-y_{k}^{u}\right)-x_{k}\right\|=\Delta_{k} \\
& \text { stop with } y_{k+1}=y_{k}^{u}+\tau^{*}\left(y_{k}^{q n}-y_{k}^{u}\right)
\end{aligned}
$$

end

Comments:

- If the algorithm stops in (*) then the dogleg minimiser lies on the first part of the leg and equals the Cauchy point.
- Otherwise the dogleg minimiser lies on the second part of the leg and is better than the Cauchy point.
- Therefore, we have $m_{k}\left(y_{k+1}\right) \leq m_{k}\left(y_{k}^{c}\right)$ as required for the convergence theorem of Lecture 6.

Steihaug's Method:

This is the most widely used method for the approximate solution of the trust-region subproblem.

The method works for quadratic models m_{k} defined by an arbitrary symmetric B_{k}. Positive definiteness is therefore not required and SR1 updates can be used for B_{k}.

It has all the good properties of the dogleg method and more

The polygon is constructed so that $m_{k}(z)$ decreases along its path, while Theorem 1 below shows that $\left\|z-x_{k}\right\|$ increases.

Therefore, if the polygon ends at $z_{n} \in R_{k}$ then $y_{k+1}=z_{n}$, and otherwise y_{k+1} is the unique point where the polygon crosses the boundary ∂R_{k} of the trust region.

Stated more formally, Steighaug's method proceeds as follows, where we made use of the identity $\nabla m_{k}\left(x_{k}\right)=\nabla f\left(x_{k}\right)$:

Algorithm 2: Steihaug

S0 choose tolerance $\epsilon>0$, set $z_{0}=x_{k}, d_{0}=-\nabla f\left(x_{k}\right)$

S1 For $j=0, \ldots, n-1$ repeat

$$
\begin{aligned}
& \text { if } d_{j}^{\top} B_{k} d_{j} \leq 0 \\
& \text { find } \tau^{*} \geq 0 \text { s.t. }\left\|z_{j}+\tau^{*} d_{j}-x_{k}\right\|=\Delta_{k} \\
& \text { stop with } y_{k+1}=z_{j}+\tau^{*} d_{j}
\end{aligned}
$$

else

$$
z_{j+1}:=z_{j}+\tau_{j} d_{j}, \text { where } \tau_{j}:=\arg \min _{\tau \geq 0} m_{k}\left(z_{j}+\tau d_{j}\right)
$$

Comments:

- Algorithm 2 stops with $y_{k+1}=z_{n}$ in ($\left.*\right)$ after iteration $n-1$ at the latest: in this case $d_{j}^{\top} B_{k} d_{j}>0$ for $j=0, \ldots, n-1$, which implies $B_{k} \succ 0$ and $\nabla m_{k}\left(z_{n}\right)=0$.
- Furthermore, since $d_{0}=-\nabla f\left(x_{k}\right)$, the algorithm stops at the Cauchy point $y_{k+1}=y_{k}^{c}$ if it stops in iteration 0.
- If the algorithm stops later then $m_{k}\left(y_{k+1}\right)<m_{k}\left(y_{k}^{c}\right)$.
- The convergence theorem of Lecture 6 is applicable.

$$
\begin{aligned}
& \text { if }\left\|z_{j+1}-x_{k}\right\| \geq \Delta_{k} \\
& \text { find } \tau^{*} \geq 0 \text { s.t. }\left\|z_{j}+\tau^{*} d_{j}-x_{k}\right\|=\Delta_{k} \\
& \text { stop with } y_{k+1}=z_{j}+\tau^{*} d_{j}
\end{aligned}
$$

end
if $\left\|\nabla m_{k}\left(z_{j+1}\right)\right\| \leq \epsilon$ stop with $y_{k+1}=z_{j+1}(*)$
compute $d_{j+1}=-\nabla m_{k}\left(z_{j+1}\right)+\frac{\left\|\nabla m_{k}\left(z_{j+1}\right)\right\|^{2}}{\left\|\nabla m_{k}\left(z_{j}\right)\right\|^{2}} d_{j}$
end
end

Theorem 1: Let the conjugate gradient algorithm be applied to the minimisation of $m_{k}(x)$ with starting point $z_{0}=x_{k}$, and suppose that $d_{j}^{\top} B_{k} d_{j}>0$ for $j=0, \ldots, i$. Then we have

$$
0=\left\|z_{0}-x_{k}\right\| \leq\left\|z_{1}-x_{k}\right\| \leq \cdots \leq\left\|z_{i}-x_{k}\right\|
$$

Proof:

- The restriction of B_{k} to $\operatorname{span}\left\{d_{0}, \ldots, d_{i}\right\}$ is a positive definite operator,

$$
\left(\sum_{j=0}^{i} \lambda_{j} d_{j}\right)^{\top} B_{k}\left(\sum_{j=0}^{i} \lambda_{j} d_{j}\right)=\sum_{j=0}^{i} \lambda_{j}^{2} d_{j}^{\top} B_{k} d_{j}>0
$$

where we used the B_{k}-conjugacy property $d_{j}^{\top} B_{k} d_{l}=0 \forall j \neq l$.

- Therefore, up to iteration i all the properties we derived for the conjugate gradient algorithm remain valid.
- Since $z_{j}-x_{k}=\sum_{l=0}^{j-1} \tau_{l} d_{l}$ for $(j=1, \ldots, i)$, we have

$$
\left\|z_{j+1}-x_{k}\right\|^{2}=\left\|z_{j}-x_{k}\right\|^{2}+\sum_{l=0}^{j-1} \tau_{j} \tau_{l} d_{j}^{\top} d_{l}
$$

Moreover, $\tau_{j}>0$ for all j.

- Therefore, it suffices to show that $d_{j}^{\top} d_{l}>0$ for all $l \leq j$.
- For $j=0$ this is trivially true. We can thus assume that the claim holds for $j-1$ and proceed by induction.
- For $l<j$ have

$$
d_{j}^{\top} d_{l}=-\nabla m_{k}\left(z_{j}\right)^{\top} d_{l}+\frac{\left\|\nabla m_{k}\left(z_{j}\right)\right\|^{2}}{\left\|\nabla m_{k}\left(z_{j-1}\right)\right\|^{2}} d_{j-1}^{\top} d_{l} .
$$

- The second term on the right-hand side is positive because of the induction hypothesis, and it was established in the proof of Lemma 2.3 from Lecture 5 that the first term is zero.
- Furthermore, if $l=j$ then we have of course $d_{j}^{\top} d_{l}>0$.

Reading Assignment: Lecture-Note 7.

