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I. Choosing the Model Function
Trust-Region Newton Methods:

If the problem dimension is not too large, the choice
By, = D?f(xy,)

is reasonable and leads to the 2nd order Taylor model

mp(z) = f(ap) + V() T (@ —ap) + %(ﬁv —a3) T D? f(ap) (z — x).

Methods based on this choice of model function are called trust-
region Newton methods.

In a neighbourhood of a strict local minimiser TR-Newton meth-
ods take the full Newton-Raphson step and have therefore Q-
quadratic convergence.

Variants of Trust-Region Methods:

0. Different choices of trust region Ry, for example using balls
defined by the norms || - ||1 or || - ||co. NoOt further pursued.

I. Choosing the model function my. We chose

(@) = S (o) + V@) (@ — i) + 5 — ) T Byl — ).

Leaves choice in determining B;. Further discussed below.

II. Approximate calculation of
&~ arg min m . 1
Yk+1 gy Ry k(y) ( )

Further discussed below.

Trust-region Newton methods are not simply the Newton-Raphson
method with an additional step-size restriction!

e TR-Newton is a descent method, whereas this is not guar-
anteed for Newton-Raphson.

e In TR-Newton, usually yg41 — zf # —(sz(mk))_:lVf(wk), as
Yk+1 IS not obtained via a line search but by optimising (1).

e In TR-Newton the update y;4; is well-defined even when
D2 f(x,) is singular.



Trust-Region Quasi-Newton Methods:

When the problem dimension n is large, the natural choice for
the model function my is to use quasi-Newton updates for the
approximate Hessians By.

Such methods are called trust-region quasi-Newton.

In a neighbourhood of a strict local minimiser TR-quasi-Newton
methods take the full quasi-Newton step and have therefore Q-
superlinear convergence.

II. Solving the Trust-Region Subproblem
The Dogleg Method:

This method is very simple and cheap to compute, but it works
only when By, > 0. Therefore, BFGS updates for B are a good,
but the method is not applicable for SR1 updates.

Motivation: let

z(A) = ar min mr(x).
(&) 9 fern <) ™)

If B, = 0 then A — z(A) describes a curvilinear path from
z(0) = z;, to the exact minimiser of the unconstrained problem
min,crn mg(x), that is, to the quasi-Newton point

yi" =z, — B 1V f ().

Differences between TR quasi-Newton and quasi-Newton line-
search:

e In TR-quasi-Newton By, # 0 is no problem, whereas in quasi-
Newton line-search it prevents the quasi-Newton update
—Bk_lVf(a:k) from being a descent direction.

e In TR-Newton the update y;; is well-defined even when By,
is singular, while —B; 'V f(z},) is not defined.

e In TR-quasi-Newton, usually yp41 — z —B,;1Vf(mk), as
yip+1 is not obtained via a line search but by optimising (1).

Idea:

e Replace the curvilinear path A — z(A) by a polygonal path
T y(7).

e Determine y;41 as the minimiser of my(y) among the points
on the path {y(v) : 7 > 0}.

The simplest and most interesting version of such a method
works with a polygon consisting of just two line segments, which
reminds some people of the leg of a dog.



The "“knee" of this leg is located at the steepest descent min-
imiser y¥ = zj, — a}'V f(zy), where o is as in Lecture 6.

In Lecture 6 we saw that unless z;, is a stationary point, we have

V@RI
PV @) T BV f ()

V f(zp).

Yp =2

From yg the dogleg path continues along a straight line segment
to the quasi-Newton minimiser y/".

The dogleg path is thus described by

() = | Tk + (Y — x1) for 7 € [0, 1],
v+ QA -n@l" -y for rel1,2].

i+

Lemma 1: Let B > 0. Then

the model function my is strictly decreasing along the path

y(7),
lly(7) — x| is strictly increasing along the path y(r),
if A >||B IV ()| then y(A) = yl",

if A <|B1Vf(zp)|| then [[y(A) -z = A,



v) the two paths z(A) and y(7) have first order contact at z,
that is, the derivatives at A = 0 are co-linear:

im S mme Vi) V@I o
A—0+ A IVf@)ll V() TBpV f(xy)
— im Y —y(0)
T—04 T ’
Proof: See Problem Set 4. U]
Algorithm 1: Dogleg Point.
compute yy
. : A
if ||y}€‘—xk|| > Ak: stop with Yk+1 = xk—i—m(y}é—xk) (*)

compute y{"

if lyl" — zg|| < Ay stop with ygyq =y

Parts i) and ii) of the Lemma show that the dogleg minimiser
Yk41 is easy to compute:

o If ygn € Ry then yp4q1 = ygn.

e Otherwise y4 1 is the unique intersection point of the dogleg
path with the trust-region boundary ORy.

else begin
find 7 s.t. ||yt + (" — i) — a2l = Ay

stop with g1 = yif + 7 (Wi" — yp)

end



Comments:

e If the algorithm stops in (*) then the dogleg minimiser lies
on the first part of the leg and equals the Cauchy point.

e Otherwise the dogleg minimiser lies on the second part of
the leg and is better than the Cauchy point.

e Therefore, we have my(yrp4+1) < mi(yf) as required for the
convergence theorem of Lecture 6.

Idea:

e Draw the polygon traced by the iterates z, = 20,21,...,2j, ...
obtained by applying the conjugate gradient algorithm to the
minimisation of the quadratic function my(z) for as long as
the updates are defined, i.e., as long as djTBkdj > 0.

e This terminates in the quasi-Newton point z, = y/", unless
d;—Bkdj < 0. In the second case, continue to draw the poly-
gon from z; to infinity along d;, as m;, can be pushed to —co
along that path.

e Minimise my, along this polygon and select y;; as the min-
imiser.

Steihaug’s Method:

This is the most widely used method for the approximate solution
of the trust-region subproblem.

The method works for quadratic models m; defined by an ar-
bitrary symmetric B;. Positive definiteness is therefore not re-
quired and SR1 updates can be used for By.

It has all the good properties of the dogleg method and more

The polygon is constructed so that my(z) decreases along its
path, while Theorem 1 below shows that ||z — z}|| increases.

Therefore, if the polygon ends at z, € Ry then y,11 = zn, and
otherwise yi41 is the unique point where the polygon crosses
the boundary 0Ry, of the trust region.

Stated more formally, Steighaug’'s method proceeds as follows,
where we made use of the identity Vmy(z,) = Vf(zp):



Algorithm 2: Steihaug
SO choose tolerance € > 0, set zg = zy, dg = —V f(x})

S1 For 5=0,...,n—1 repeat

e T
if d Byd; <0

find 7 > 0 s.t. ||z + 7%dj — ]| = A
stop with yy41 = z; + 7%d;
else

zj41 = zj + 7;d;j, where 7; 1= argmin >omy(z; + 7d;)

Comments:

e Algorithm 2 stops with y;41 = 2z in (*) after iteration n —1
at the latest: in this case d;erdj >0 for j =0,...,n—1,
which implies By > 0 and Vmy(z,) = 0.

e Furthermore, since dg = —V f(x}), the algorithm stops at the
Cauchy point y;41 = yy, if it stops in iteration 0.

e If the algorithm stops later then my(yr41) < mp(y5).

e The convergence theorem of Lecture 6 is applicable.

if llzj41 — @il > A

stop with Y+1 = %5 + T*dj
end

if ||mG(zj+1)|| < € stop with Yk+1 = Zj+1 (*)
o , [V (z D12 5
compute dj 1 = —Vmy(zj41) + Va2 %

end

end

Theorem 1: Let the conjugate gradient algorithm be applied
to the minimisation of my(z) with starting point zg = =z, and
suppose that d;.'—Bkdj >0 for j =0,...,i%. Then we have

0=|lzo —a|l < llz1 —agll < -+ <z — |-
Proof:

e The restriction of By to span{dp,...,d;} is a positive definite
operator,

(ZZ: )‘jdj)TBk(zi: Ajdj) = i \2d| Byd; > 0,
j=0 j=0 j=0

where we used the Bi-conjugacy property djTBkdl =0Vj#IL



e Therefore, up to iteration 7 all the properties we derived for

the conjugate gradient algorithm remain valid. e For I < j have

2
. . . ) T, T ||le<:(z])|| T
e Since z; — xj, = Z{zé nd; for (j=1,...,i), we have dj dp = —Vmy(z;) d;+ IVme(z- DI j—1dy-

j—1
2 2 T
s —x =|z; —x + E T:7id; dj.
Izj+1 el Iz il =0 7% e The second term on the right-hand side is positive because

Moreover, 7; > 0 for all j. of the induction hypothesis, and it was established in the
proof of Lemma 2.3 from Lecture 5 that the first term is
zero.

e Therefore, it suffices to show that ddel >0 for all I < j.

) o o e Furthermore, if I = j then we have of course del > 0. L]
e For 7 = 0 this is trivially true. We can thus assume that the J

claim holds for 57 — 1 and proceed by induction.

Reading Assignment: Lecture-Note 7.



