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Variants of Trust-Region Methods:

II.

Different choices of trust region Rj, for example using balls
defined by the norms || - ||1 or || - ||cc- NOt further pursued.

Choosing the model function m;. We chose

() = f(ei) + V) T~ m) + 5 (e — o) T Byla — ).

Leaves choice in determining Bj. Further discussed below.

Approximate calculation of

~ arg min m . 1
Y41 gyeRk k(Y) (1)

Further discussed below.



I. Choosing the Model Function
Trust-Region Newton Methods:

If the problem dimension is not too large, the choice
By = D?f(x3,)
IS reasonable and leads to the 2nd order Taylor model

() = [ (o) + V5 @) T~ 2) + 5 (o — 1) TD? ) @ — o).

Methods based on this choice of model function are called trust-
region Newton methods.

In a neighbourhood of a strict local minimiser TR-Newton meth-
ods take the full Newton-Raphson step and have therefore Q-
quadratic convergence.



Trust-region Newton methods are not simply the Newton-Raphson
method with an additional step-size restriction!

e [ R-Newton is a descent method, whereas this is not guar-
anteed for Newton-Raphson.

e In TR-Newton, usually yi41 — g % —(D?f(z)) IV f(zs), as
Yr+1 IS not obtained via a line search but by optimising (1).

e In TR-Newton the update yi4; is well-defined even when
D2 f(xz;) is singular.



Trust-Region Quasi-Newton Methods:

When the problem dimension n is large, the natural choice for
the model function m; is to use quasi-Newton updates for the
approximate Hessians By.

Such methods are called trust-region quasi-Newton.

In a neighbourhood of a strict local minimiser T R-quasi-Newton
methods take the full quasi-Newton step and have therefore Q-
superlinear convergence.



Differences between TR quasi-Newton and quasi-Newton line-
search:

e In TR-quasi-Newton B % 0 is no problem, whereas in quasi-
Newton line-search it prevents the quasi-Newton update
—B,:1Vf(xk) from being a descent direction.

e In TR-Newton the update y;4 1 is well-defined even when By
is singular, while —B; 'V f(x},) is not defined.

e In TR-quasi-Newton, usually yip41 — zp % —B];1Vf(xk), as
Yp+1 IS not obtained via a line search but by optimising (1).



II. Solving the Trust-Region Subproblem

The Dogleg Method:

This method is very simple and cheap to compute, but it works
only when By > 0. Therefore, BFGS updates for B, are a good,
but the method is not applicable for SR1 updates.

Motivation: let

r(A) = ar min my(x).
(A= 39 emn W<ay ™)

If B, = 0 then A — x(A) describes a curvilinear path from
x(0) = x;, to the exact minimiser of the unconstrained problem
min,crn mg(x), that is, to the quasi-Newton point

yi" =z — B; 'V f(ay).



Idea:

e Replace the curvilinear path A — x(A) by a polygonal path
T — y(71).

e Determine yi41 as the minimiser of mg(y) among the points
on the path {y(7) : = > 0}.

The simplest and most interesting version of such a method
works with a polygon consisting of just two line segments, which
reminds some people of the leg of a dog.



The “knee” of this leg is located at the steepest descent min-
imiser yi! = xp, — o'V f(zy), where of is as in Lecture 6.

In Lecture 6 we saw that unless z; is a stationary point, we have
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Y =T Vf(zg).

From y}é the dogleg path continues along a straight line segment
to the quasi-Newton minimiser y{".
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yk+

The dogleg path is thus described by

_ oz + 7y — xp)
v {y}; + (1 -7 — v

yq

for r € [0, 1],
for € [1,2].

(2)



Lemma 1: Let B, > 0. Then

i) the model function my is strictly decreasing along the path

y(7),
i) |ly(r) — x| is strictly increasing along the path y(7),
i) if A > ||B; 'V f(zp)|l then y(A) = yi",

iv) if A <||B V(x| then [[y(A) — zi) = A,



v) the two paths x(A) and y(r) have first order contact at x,
that is, the derivatives at A = 0 are co-linear:

(D) —zp V() —IVEI? .
N N IV f ()| Vf(ﬂ?k)TBka(wk)vf( k)
_ im Y —y(0)
T—0+ T

Proof: See Problem Set 4. [ ]



Parts i) and ii) of the Lemma show that the dogleg minimiser
Yrp+1 1S €easy to compute:

o If ygn € R;. then Yp+1 = yzn

e Otherwise yi41 is the unique intersection point of the dogleg
path with the trust-region boundary OR;.



Algorithm 1: Dogleg Point.
compute y;
if |lyy — =zl > Ay stop with yp1 1 = a;k—l—%(y};—xk) (*)
compute y"

i llyg — @kl < Ay stop with g ="



else begin
find 7% s.t. |lyp + 75yl — vj) —xill = A

stop with yr41 =y + T*(ygn —y)

end



Comments:

e If the algorithm stops in (*) then the dogleg minimiser lies
on the first part of the leg and equals the Cauchy point.

e Otherwise the dogleg minimiser lies on the second part of
the leg and is better than the Cauchy point.

e Therefore, we have my(yr+1) < myp(yy) as required for the
convergence theorem of Lecture 6.



Steihaug’s Method:

This is the most widely used method for the approximate solution
of the trust-region subproblem.

The method works for quadratic models m; defined by an ar-
bitrary symmetric Bj. Positive definiteness is therefore not re-
quired and SR1 updates can be used for B;.

It has all the good properties of the dogleg method and more



Idea:

e Draw the polygon traced by the iterates x; = 20, 21,...,2j, - - -
obtained by applying the conjugate gradient algorithm to the
minimisation of the quadratic function mg(x) for as long as
the updates are defined, i.e., as long as d;'_Bkdj > 0.

e This terminates in the quasi-Newton point z, = 3", unless
d;-erdj < 0. In the second case, continue to draw the poly-
gon from z; to infinity along d;, as m; can be pushed to —oo
along that path.

e Minimise my along this polygon and select y;41 as the min-
imiser.



The polygon is constructed so that my(z) decreases along its
path, while Theorem 1 below shows that ||z — x.|| increases.

T herefore, if the polygon ends at z, € R, then Yk+1 = 2n, and
otherwise yi41 is the unique point where the polygon crosses
the boundary OR; of the trust region.

Stated more formally, Steighaug’'s method proceeds as follows,
where we made use of the identity Vmg(z) = Vf(xg):



Algorithm 2: Steihaug
SO choose tolerance € > 0, set zg =z, dg = —V f(x)

S1 For y=0,...,n—1 repeat

i T

find 7% > 0 s.t. ||z; + 7%d; — x| = Dg
stop with Ye+1 = %5 -+ T*dj
else

Zi41 = Zj -+ Tjdj, where Tj .— arg minTZO mk(zj -+ de)



it |l2j41 — zill =2 Ag

find 7* > 0 s.t. ||z; + 77°d; — x| = Dy
stop with yp41 = z; + 77d;
end
It [[Vmg (241 < € stop with yeyq = 2549 (%)

Vg (zi11)|?
compute dj1 = ~Vmg(zj41) + ||vfzk<jz§>1||2” %

end

end



Comments:

e Algorithm 2 stops with yi41 = 2z in (*) after iteration n —1
at the latest: in this case d;erdj >0 for 3 =0,...,n— 1,
which implies B = 0 and Vm(zn) = 0.

e Furthermore, since dg = —V f(x;), the algorithm stops at the
Cauchy point yi41 =y if it stops in iteration O.

o If the algorithm stops later then my(yr41) < mi(y5).

e [ he convergence theorem of Lecture 6 is applicable.



Theorem 1: Let the conjugate gradient algorithm be applied
to the minimisation of mg(xz) with starting point zg = z;, and
suppose that d;-erdj >0 for j =0,...,i. Then we have

0 =llz0 —z|| < |21 — ]| < -+ < ||z — x|
Proof:

e The restriction of By to span{dg,...,d;} is a positive definite
operator,

(i Ajdj)TBk(Ei) Ajdj) = S° A2dT Bud; > 0,
j=0 j=0 j=0

where we used the Bip-conjugacy property d;.erdl =0V =+l



Therefore, up to iteration ¢ all the properties we derived for
the conjugate gradient algorithm remain valid.

Since z; — xp, = Zj;é idy for (j =1,...,i), we have
j—1
> _ y T
12j41 — zkll© = llzj — 2 l|= + > 7md; d;.
=0

Moreover, 7; > 0 for all j.
Therefore, it suffices to show that d;rdl > 0 for all [ < 3.

For 5 = 0O this is trivially true. We can thus assume that the
claim holds for y — 1 and proceed by induction.



e For [ < j have

1V (27)]]2 T
[V (z;—1)]|% 7~

dj dy = —Vmy(z;) "d; + 1d;.

e [ he second term on the right-hand side is positive because
of the induction hypothesis, and it was established in the
proof of Lemma 2.3 from Lecture 5 that the first term is

Zero.

e Furthermore, if [ = j then we have of course d;rdl > 0. ]



Reading Assignment: Lecture-Note 7.



