The Fundamental Theorem of Linear Inequalities

Lecture 8, Continuous Optimisation

Oxford University Computing Laboratory, HT 2006
Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Constrained Optimisation and the Need for Optimality Conditions:

In the remaining part of this course we will consider the problem of minimising objective functions over constrained domains. The general problem of this kind can be written in the form

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { s.t. } & g_{i}(x)=0 \quad(i \in \mathcal{E}), \\
& g_{j}(x) \geq 0 \quad(i \in \mathcal{I}),
\end{array}
$$

where \mathcal{E} and \mathcal{I} are the finite index sets corresponding to the equality and inequality constraints, and where $f, g_{i} \in C^{k}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ for all $(i \in \mathcal{I} \cup \mathcal{E})$.

A natural by-product of this analysis will be the notion of a Lagrangian dual of an optimisation problem: every optimisation problem - called the primal - has a sister problem in the space of Lagrange multipliers - called the dual

In constrained optimisation it is often advantageous to think of the primal and dual in a combined primal-dual framework where each sheds light from a different angle on a certain saddle-point finding problem.

First we will take a closer look at systems of linear inequalities and prove a theorem that will be of fundamental importance in everything that follows:

Theorem 1: Fundamental theorem of linear inequalities. Let $a_{1}, \ldots, a_{m}, b \in \mathbb{R}^{n}$ be a set of vectors. Then exactly one of the two following alternatives occurs:
(I) $\exists y \in \mathbb{R}_{+}^{m}$ such that $b=\sum_{i}^{m} y_{i} a_{i}$.
(II) $\exists d \in \mathbb{R}^{n}$ such that $d^{\top} b<0$ and $d^{\top} a_{i} \geq 0$ for all $(i=1, \ldots, m)$.

Note that Alternative (I) says that b lies in the convex cone generated by the vectors a_{i} :

$$
b \in \operatorname{cone}\left(a_{1}, \ldots, a_{m}\right):=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}: \lambda_{i} \geq 0 \forall i\right\}
$$

Alternative (II) on the other hand says that the hyperplane $d^{\perp}:=$ $\left\{x \in \mathbb{R}^{n}: d^{\top} x=0\right\}$ strictly separates b from the convex set cone $\left(a_{1}, \ldots, a_{m}\right)$.

Thus, Theorem 1 is a result about convex separation: either b is a member of cone $\left(a_{1}, \ldots, a_{m}\right)$ or there exists a hyperplane that strictly separates the two objects.

Lemma 1: The two alternatives of Theorem 1 are mutually exclusive.

Proof: If this is not the case then we find the contradiction

$$
0 \leq \sum_{i=1}^{m} y_{i}\left(d^{\top} a_{i}\right)=d^{\top}\left(\sum_{i=1}^{m} y_{i} a_{i}\right)=d^{\top} b<0 .
$$

Lemma 2: W.I.o.g. we may assume that $\operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\}=\mathbb{R}^{n}$.

Proof:

- If $\operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\} \neq \mathbb{R}^{n}$ then either $b \in \operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\}$ and then we can restrict all arguments of the proof of Theorem 1 to the linear subspace $\operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\}$ of \mathbb{R}^{n}.
- Else, if $b \notin \operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\}$ then b cannot be written in the form $b=\sum_{i}^{m} \mu_{i} a_{i}$, so Alternative (I) does not hold.

Because of Lemma 2, we will henceforth assume that

$$
\operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\}=\mathbb{R}^{n}
$$

We will next construct an algorithm that stops when a situation corresponding to either Alternative (I) or (II) is detected.

This will in fact be the simplex algorithm for LP in disguised form.

- It remains to show that Alternative (II) applies in this case. Let π be the the orthogonal projection of \mathbb{R}^{n} onto $\operatorname{span}\left\{a_{1}, \ldots, a^{\prime}\right.$ and let $d=\pi(b)-b$. Then $d \perp \operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\}$, so that

$$
\begin{aligned}
d^{\top} b & =d^{\top}(b-\pi(b))+d^{\top} \pi(b)=-\|d\|^{2}+0<0, \\
d^{\top} a_{i} & =0 \quad \forall i
\end{aligned}
$$

Therefore, Alternative (II) holds.

Algorithm 1:

So Choose $J^{1} \subseteq\{1, \ldots, m\}$ such that $\operatorname{span}\left\{a_{i}\right\}_{J^{1}}=\mathbb{R}^{n},\left|J^{1}\right|=n$.

S1 For $k=1,2, \ldots$ repeat

1. decompose $b=\sum_{i \in J^{k}} y_{i}^{k} a_{i}$
2. if $y_{i}^{k} \geq 0 \forall i \in J^{k}$ return y^{k} and stop.
3. else begin
let $j^{k}:=\min \left\{i \in J^{k}: y_{i}^{k}<0\right\}$
let $\pi^{k}: \mathbb{R}^{n} \rightarrow \operatorname{span}\left\{a_{i}: i \in J^{k} \backslash\left\{j^{k}\right\}\right\}$ orthogonal projection
let $d^{k}:=\left\|a_{j^{k}}-\pi^{k}\left(a_{j^{k}}\right)\right\|^{-1}\left(a_{j^{k}}-\pi^{k}\left(a_{j^{k}}\right)\right)$
if $\left(d^{k}\right)^{\top} a_{i} \geq 0$ for $(i=1, \ldots, m)$ return d^{k} and stop.

end

4. let $l^{k}:=\min \left\{i:\left(d^{k}\right)^{\top} a_{i}<0\right\}$
5. let $J^{k+1}:=J^{k} \backslash\left\{j^{k}\right\} \cup\left\{l^{k}\right\}$
end.

- If the algorithm enters Step 4 then $\left\{i:\left(d^{k}\right)^{\top} a_{i}<0\right\} \neq \emptyset$ because the condition of the last "if" statement of Step 3 is not satisfied. Moreover, since

$$
\begin{aligned}
\left(d^{k}\right)^{\top} a_{j^{k}} & =1 \\
\left(d^{k}\right)^{\top} a_{i} & =0 \quad\left(i \in J^{k} \backslash\left\{j^{k}\right\}\right)
\end{aligned}
$$

we have $\left\{i:\left(d^{k}\right)^{\top} a_{i}<0\right\} \cap J^{k}=\emptyset$. This shows that $l^{k} \notin J^{k}$.

- We have $\operatorname{span}\left\{a_{i}: i \in J^{k+1}\right\}=\mathbb{R}^{n}$, because $\left(d^{k}\right)^{\top} a_{l^{k}} \neq 0$ and $\left(d^{k}\right)^{\top} a_{i}=0\left(i \in J^{k} \backslash\left\{j^{k}\right\}\right)$ show that $a_{l^{k}} \notin \operatorname{span}\left\{a_{i}: i \in\right.$ $\left.J^{k} \backslash\left\{j^{k}\right\}\right\}$. Moreover, $\left|J^{k+1}\right|=n$.

Comments:

- If the algorithm returns y^{k} in Step 2, then Alternative (I) holds: let $y_{i}=0$ for $i \neq J^{k}$ and $y_{i}=y_{i}^{k}$ for $i \in J$. Then $y \in \mathbb{R}_{+}^{m}$ and $b=\sum_{i} y_{i} a_{i}$.
- If the algorithm enters Step 3, then $\left\{i \in J^{k}: y_{i}^{k}<0\right\} \neq \emptyset$ because the condition of Step 2 is not satisfied.
- The vector d^{k} constructed in Step 3 satisfies

$$
\begin{equation*}
\left(d^{k}\right)^{\top} b=\sum_{i \in J^{k}} y_{i}^{k}\left(d^{k}\right)^{\top} a_{i}=y_{j^{k}}^{k}\left(d^{k}\right)^{\top} a_{j^{k}}<0 \tag{1}
\end{equation*}
$$

Therefore, if the algorithm returns d^{k} then Alternative (II) holds with $d=d^{k}$.

Lemma 3: It can never occur that $J^{k}=J^{t}$ for $k<t$.

Proof:

- Let us assume to the contrary that $J^{k}=J^{t}$ for some iterations $k<t$, and let $j^{\max }:=\max \left\{j^{s}: k \leq s \leq t-1\right\}$.
- Then there exists $p \in\{k, k+1, \ldots, t-1\}$ such that $j^{\max }=j^{p}$.
- Since $J^{k}=J^{t}$, there also exists $q \in\{k, k+1, \ldots, t-1\}$ such that $j^{\max }=l^{q}$. In other words, the index must have once left J and then reentered, or else it must have entered and then left again.
- Now $j^{\text {max }}=j^{p}$ implies that for all $i \in J^{p}$ such that $i<j^{\text {max }}$ we have $y_{i}^{p} \geq 0$.
- Likewise, for the same indices i we have $\left(d^{q}\right)^{\top} a_{i} \geq 0$, as

$$
i<j^{\max }=l^{q}=\min \left\{i:\left(d^{q}\right)^{\top} a_{i}<0\right\}
$$

- Furthermore, we have $y_{j \max }^{p}=y_{j p}^{p}<0$ and $\left(d^{q}\right)^{\top} a_{j \text { max }}=$ $\left(d^{q}\right)^{\top} a_{l q}<0$.

We are finally ready to prove the fundamental theorem of linear inequalities:

Proof: (Theorem 1)

- Since $J^{k} \subseteq\{1, \ldots, m\}$ and there are finitely many choices for these index sets and Lemma 3 shows that there are no repetitions in the sequence J^{1}, J^{2}, \ldots, the sequence must be finite.
- But this is only possible if in some iteration k Algorithm 1 either returns y^{k}, detecting that Alternative (I) holds, or d^{k}, detecting that Alternative (II) holds.
- And finally, since $J^{s} \cap\left\{j^{\max }+1, \ldots, m\right\}$ remains unchanged for $s=k, \ldots, t$ we have $\left(d^{q}\right)^{\top} a_{i}=0$ for all $i \in J^{p}$ such that $i>j^{\max }$.
- Therefore,

$$
\begin{equation*}
\left(d^{q}\right)^{\top} b=\sum_{i \in J^{p}} y_{i}^{p}\left(d^{q}\right)^{\top} a_{i} \geq 0 \tag{2}
\end{equation*}
$$

- On the other hand, (1) shows $\left(d^{q}\right)^{\top} b<0$, contradicting (2). Thus, indices $k<t$ such that $J^{k}=J^{t}$ do not exist.

The Implicit Function Theorem:

Another fundamental tool we will need is the implicit function theorem.

Before stating the theorem, let us illustrate it with an example:

Example 1: The function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$ has a zero at the point $(1,0)$ and $\frac{\partial}{\partial x_{1}} f(1,0)=1 \neq 0$. In a neighbourhood of this point the level set $\left\{\left(x_{1}, x_{2}\right): f\left(x_{1}, x_{2}\right)=0\right\}$ can be explicitly parameterised in terms of x_{2}, that is, there exists a function $h(t)$ such that $f\left(x_{1}, x_{2}\right)=0$ if and only if $\left(x_{1}, x_{2}\right)=(h(t), t)$ for some value of t.

- The level set is nothing else but the unit circle S^{1}, and for $\left(x_{1}, x_{2}\right)$ with $x_{1}>0$ we have $f\left(x_{1}, x_{2}\right)=0$ if and only if $x_{1}=h\left(x_{2}\right)$ where $h(t)=\sqrt{1-t^{2}}$.
- Thus,

$$
S^{1} \cap\left\{x \in \mathbb{R}^{2}: x_{1}>0\right\}=\{(h(t), t): t \in(-1,1)\}
$$

as claimed.

- Another way to say this is that S^{1} is a differentiable manifold with local coordinate map

$$
\begin{aligned}
\varphi: S^{1} \cap\left\{x \in \mathbb{R}^{2}: x_{1}>0\right\} & \rightarrow(-1,1) \\
x & \mapsto x_{2}
\end{aligned}
$$

- The parameterisation in terms of x_{2} was only possible because $\frac{\partial}{\partial x_{1}} f(1,0) \neq 0$.
- To illustrate this, note that we also have $f(0,1)=0$, but now $\frac{\partial}{\partial x_{1}} f(0,1)=0$ and we cannot parameterise S^{1} by x_{2} in a neighbourhood of $(0,1)$.
- In fact, in a neighbourhood of $x_{2}=1$, there are two x_{1} values $\pm \sqrt{1-x_{2}^{2}}$ such that $f\left(x_{1}, x_{2}\right)=0$ when $x_{2}<1$ and none when $x_{2}>0$.

Example 2:

Generalisation:

- $f \in C^{k}\left(\mathbb{R}^{p+q}, \mathbb{R}^{p}\right)$.
- Let $f_{B}^{\prime}(x)$ be the leading $p \times p$ block of the Jacobian matrix $f^{\prime}(x)=\left[f_{B}^{\prime}(x) f_{N}^{\prime}(x)\right]$,
- and $f_{N}^{\prime}(x)$ the trailing $p \times q$ block.
- Let x_{B} be the first $p \times 1$ block of the vector x
- and x_{N} the trailing $q \times 1$ block.

Theorem 2: Implicit Function Theorem. Let $f \in C^{k}\left(\mathbb{R}^{p+q}, \mathbb{R}^{p}\right)$ and let $\bar{x} \in \mathbb{R}^{p+q}$ be such that $f(\bar{x})=0$ and $f_{B}^{\prime}(\bar{x})$ nonsingular.

Then there exist open neighbourhoods $U_{B} \subset \mathbb{R}^{p}$ of \bar{x}_{B} and $U_{N} \subset$ \mathbb{R}^{q} of \bar{x}_{N} and a function $h \in C^{k}\left(U_{N}, U_{B}\right)$ such that for all $\left(x_{B}, x_{N}\right) \in$ $U_{B} \times U_{N}$,
i) $f\left(x_{B}, x_{N}\right)=0 \Leftrightarrow x_{B}=h\left(x_{N}\right)$,

Reading Assignment: Lecture-Note 8.
ii) $f_{B}^{\prime}(x)$ is nonsingular,
iii) $h^{\prime}\left(x_{N}\right)=-\left(f_{B}^{\prime}(x)\right)^{-1} f_{N}^{\prime}(x)$.

