The Fundamental Theorem of Linear Inequalities

Lecture 8, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Constrained Optimisation and the Need for Optimality Conditions:

In the remaining part of this course we will consider the problem of minimising objective functions over constrained domains. The general problem of this kind can be written in the form

$$\begin{split} \min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t.} \quad g_i(x) = 0 \quad (i \in \mathcal{E}), \\ g_j(x) \geq 0 \quad (i \in \mathcal{I}), \end{split}$$

where \mathcal{E} and \mathcal{I} are the finite index sets corresponding to the equality and inequality constraints, and where $f, g_i \in C^k(\mathbb{R}^n, \mathbb{R})$ for all $(i \in \mathcal{I} \cup \mathcal{E})$.

In unconstrained optimisation we found that we can use the optimality conditions derived in Lecture 1 to transform optimisation problems into zero-finding problems for systems of nonlinear equations

$$\nabla f(x) = 0.$$

We will spend the next few lectures to develop a similar approach to constrained optimisation: in this case the optimal solutions can be characterised by systems of nonlinear equations and inequalities. A natural by-product of this analysis will be the notion of a *Lagrangian dual* of an optimisation problem: every optimisation problem - called the primal - has a sister problem in the space of Lagrange multipliers - called the dual.

In constrained optimisation it is often advantageous to think of the primal and dual in a combined primal-dual framework where each sheds light from a different angle on a certain saddle-point finding problem. First we will take a closer look at systems of *linear* inequalities and prove a theorem that will be of fundamental importance in everything that follows:

Theorem 1: Fundamental theorem of linear inequalities. Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$ be a set of vectors. Then exactly one of the two following alternatives occurs:

(I) $\exists y \in \mathbb{R}^m_+$ such that $b = \sum_i^m y_i a_i$.

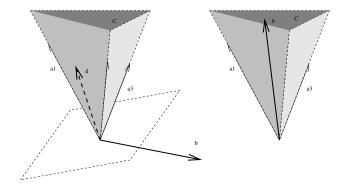
(II) $\exists d \in \mathbb{R}^n$ such that $d^{\mathsf{T}}b < 0$ and $d^{\mathsf{T}}a_i \geq 0$ for all (i = 1, ..., m).

Note that Alternative (I) says that b lies in the convex cone generated by the vectors a_i :

$$b \in \operatorname{cone}(a_1, \dots, a_m) := \left\{ \sum_{i=1}^n \lambda_i a_i : \lambda_i \ge 0 \ \forall i \right\}$$

Alternative (II) on the other hand says that the hyperplane $d^{\perp} := \{x \in \mathbb{R}^n : d^{\top}x = 0\}$ strictly separates *b* from the convex set $\operatorname{cone}(a_1, \ldots, a_m)$.

Thus, Theorem 1 is a result about convex separation: either *b* is a member of $cone(a_1, \ldots, a_m)$ or there exists a hyperplane that strictly separates the two objects.



Lemma 1: The two alternatives of Theorem 1 are mutually exclusive.

Proof: If this is not the case then we find the contradiction

$$0 \leq \sum_{i=1}^{m} y_i(d^{\mathsf{T}}a_i) = d^{\mathsf{T}}\left(\sum_{i=1}^{m} y_ia_i\right) = d^{\mathsf{T}}b < 0. \quad \Box$$

Lemma 2: W.I.o.g. we may assume that span{ a_1, \ldots, a_m } = \mathbb{R}^n .

Proof:

- If span $\{a_1, \ldots, a_m\} \neq \mathbb{R}^n$ then either $b \in \text{span}\{a_1, \ldots, a_m\}$ and then we can restrict all arguments of the proof of Theorem 1 to the linear subspace span $\{a_1, \ldots, a_m\}$ of \mathbb{R}^n .
- Else, if b ∉ span{a₁,..., a_m} then b cannot be written in the form b = ∑_i^m μ_ia_i, so Alternative (I) does not hold.

• It remains to show that Alternative (II) applies in this case. Let π be the the orthogonal projection of \mathbb{R}^n onto span $\{a_1, \ldots, a_n\}$ and let $d = \pi(b) - b$. Then $d \perp \text{span}\{a_1, \ldots, a_m\}$, so that

$$d^{\mathsf{T}}b = d^{\mathsf{T}}(b - \pi(b)) + d^{\mathsf{T}}\pi(b) = -||d||^2 + 0 < 0,$$

$$d^{\mathsf{T}}a_i = 0 \quad \forall i.$$

Therefore, Alternative (II) holds.

Algorithm 1:

So Choose $J^1 \subseteq \{1, \ldots, m\}$ such that span $\{a_i\}_{J^1} = \mathbb{R}^n$, $|J^1| = n$.

- S1 For $k = 1, 2, \ldots$ repeat
 - 1. decompose $b = \sum_{i \in J^k} y_i^k a_i$
 - 2. if $y_i^k \ge 0 \forall i \in J^k$ return y^k and stop.
 - 3. else begin

let $j^k := \min\{i \in J^k : y_i^k < 0\}$

let $\pi^k:\mathbb{R}^n\to \operatorname{span}\{a_i:\,i\in J^k\setminus\{j^k\}\}$ orthogonal projection

Because of Lemma 2, we will henceforth assume that

$$\operatorname{span}\{a_1,\ldots,a_m\}=\mathbb{R}^n.$$

We will next construct an algorithm that stops when a situation corresponding to either Alternative (I) or (II) is detected.

This will in fact be the simplex algorithm for LP in disguised form.

let
$$d^k := ||a_{j^k} - \pi^k(a_{j^k})||^{-1}(a_{j^k} - \pi^k(a_{j^k}))$$

if $(d^k)^{\top}a_i \ge 0$ for $(i = 1, ..., m)$ return d^k and stop.

end

4. let
$$l^k := \min\{i : (d^k)^{\mathsf{T}} a_i < 0\}$$

5. let $J^{k+1} := J^k \setminus \{j^k\} \cup \{l^k\}$

end.

• If the algorithm enters Step 4 then $\{i : (d^k)^{\mathsf{T}}a_i < 0\} \neq \emptyset$ because the condition of the last "if" statement of Step 3 is not satisfied. Moreover, since

$$\begin{aligned} (d^k)^{\mathsf{T}} a_{j^k} &= 1, \\ (d^k)^{\mathsf{T}} a_i &= 0 \quad (i \in J^k \setminus \{j^k\}), \end{aligned}$$

we have $\{i: (d^k)^{\mathsf{T}} a_i < 0\} \cap J^k = \emptyset$. This shows that $l^k \notin J^k$.

• We have span{ $a_i : i \in J^{k+1}$ } = \mathbb{R}^n , because $(d^k)^{\mathsf{T}}a_{l^k} \neq 0$ and $(d^k)^{\mathsf{T}}a_i = 0$ $(i \in J^k \setminus \{j^k\})$ show that $a_{l^k} \notin \text{span}\{a_i : i \in J^k \setminus \{j^k\}\}$. Moreover, $|J^{k+1}| = n$.

Comments:

- If the algorithm returns y^k in Step 2, then Alternative (I) holds: let $y_i = 0$ for $i \neq J^k$ and $y_i = y_i^k$ for $i \in J$. Then $y \in \mathbb{R}^m_+$ and $b = \sum_i y_i a_i$.
- If the algorithm enters Step 3, then $\{i \in J^k : y_i^k < 0\} \neq \emptyset$ because the condition of Step 2 is not satisfied.
- The vector d^k constructed in Step 3 satisfies

$$(d^{k})^{\mathsf{T}}b = \sum_{i \in J^{k}} y_{i}^{k} (d^{k})^{\mathsf{T}}a_{i} = y_{j^{k}}^{k} (d^{k})^{\mathsf{T}}a_{j^{k}} < 0,$$
(1)

Therefore, if the algorithm returns d^k then Alternative (II) holds with $d = d^k$.

Lemma 3: It can never occur that $J^k = J^t$ for k < t.

Proof:

- Let us assume to the contrary that $J^k = J^t$ for some iterations k < t, and let $j^{\max} := \max\{j^s : k \le s \le t 1\}$.
- Then there exists $p \in \{k, k+1, \dots, t-1\}$ such that $j^{\max} = j^p$.
- Since $J^k = J^t$, there also exists $q \in \{k, k + 1, ..., t 1\}$ such that $j^{\max} = l^q$. In other words, the index must have once left J and then reentered, or else it must have entered and then left again.

- Now $j^{\max} = j^p$ implies that for all $i \in J^p$ such that $i < j^{\max}$ we have $y_i^p \ge 0$.
- Likewise, for the same indices i we have $(d^q)^{\mathsf{T}}a_i \geq 0$, as

$$i < j^{\max} = l^q = \min\{i : (d^q)^{\mathsf{T}} a_i < 0\}.$$

• Furthermore, we have $y_{j\max}^p = y_{jp}^p < 0$ and $(d^q)^T a_{j\max} = (d^q)^T a_{lq} < 0$.

- And finally, since $J^s \cap \{j^{\max} + 1, \dots, m\}$ remains unchanged for $s = k, \dots, t$ we have $(d^q)^{\mathsf{T}} a_i = 0$ for all $i \in J^p$ such that $i > j^{\max}$.
- Therefore,

$$(d^q)^{\mathsf{T}}b = \sum_{i \in J^p} y_i^p (d^q)^{\mathsf{T}} a_i \ge 0.$$
(2)

• On the other hand, (1) shows $(d^q)^{\mathsf{T}}b < 0$, contradicting (2). Thus, indices k < t such that $J^k = J^t$ do not exist.

We are finally ready to prove the fundamental theorem of linear inequalities:

Proof: (Theorem 1)

- Since $J^k \subseteq \{1, \ldots, m\}$ and there are finitely many choices for these index sets and Lemma 3 shows that there are no repetitions in the sequence J^1, J^2, \ldots , the sequence must be finite.
- But this is only possible if in some iteration k Algorithm 1 either returns y^k , detecting that Alternative (I) holds, or d^k , detecting that Alternative (II) holds.

The Implicit Function Theorem:

Another fundamental tool we will need is the implicit function theorem.

Before stating the theorem, let us illustrate it with an example:

Example 1: The function $f(x_1, x_2) = x_1^2 + x_2^2 - 1$ has a zero at the point (1, 0) and $\frac{\partial}{\partial x_1}f(1, 0) = 1 \neq 0$. In a neighbourhood of this point the level set $\{(x_1, x_2) : f(x_1, x_2) = 0\}$ can be explicitly parameterised in terms of x_2 , that is, there exists a function h(t) such that $f(x_1, x_2) = 0$ if and only if $(x_1, x_2) = (h(t), t)$ for some value of t.

- The level set is nothing else but the unit circle S^1 , and for (x_1, x_2) with $x_1 > 0$ we have $f(x_1, x_2) = 0$ if and only if $x_1 = h(x_2)$ where $h(t) = \sqrt{1 t^2}$.
- Thus,

 $S^1 \cap \{x \in \mathbb{R}^2 : x_1 > 0\} = \{(h(t), t) : t \in (-1, 1)\},$ as claimed.

• Another way to say this is that S^1 is a differentiable manifold with local coordinate map

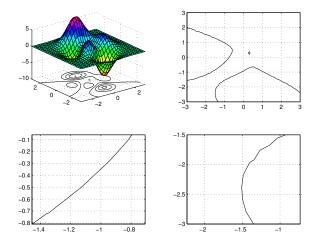
$$\varphi: S^1 \cap \{x \in \mathbb{R}^2 : x_1 > 0\} \to (-1, 1),$$
$$x \mapsto x_2.$$

- The parameterisation in terms of x_2 was only possible because $\frac{\partial}{\partial x_1} f(1,0) \neq 0$.
- To illustrate this, note that we also have f(0,1) = 0, but now $\frac{\partial}{\partial x_1} f(0,1) = 0$ and we cannot parameterise S^1 by x_2 in a neighbourhood of (0,1).
- In fact, in a neighbourhood of $x_2 = 1$, there are two x_1 values $\pm \sqrt{1 x_2^2}$ such that $f(x_1, x_2) = 0$ when $x_2 < 1$ and none when $x_2 > 0$.

Generalisation:

- $f \in C^k(\mathbb{R}^{p+q},\mathbb{R}^p).$
- Let $f'_B(x)$ be the leading $p \times p$ block of the Jacobian matrix $f'(x) = [f'_B(x) f'_N(x)],$
- and $f'_N(x)$ the trailing $p \times q$ block.
- Let x_B be the first $p \times 1$ block of the vector x
- and x_N the trailing $q \times 1$ block.

Example 2:



Theorem 2: Implicit Function Theorem. Let $f \in C^k(\mathbb{R}^{p+q}, \mathbb{R}^p)$ and let $\bar{x} \in \mathbb{R}^{p+q}$ be such that $f(\bar{x}) = 0$ and $f'_B(\bar{x})$ nonsingular.

Then there exist open neighbourhoods $U_B \subset \mathbb{R}^p$ of \overline{x}_B and $U_N \subset \mathbb{R}^q$ of \overline{x}_N and a function $h \in C^k(U_N, U_B)$ such that for all $(x_B, x_N) \in U_B \times U_N$,

i) $f(x_B, x_N) = 0 \Leftrightarrow x_B = h(x_N)$,

ii) $f'_B(x)$ is nonsingular,

iii) $h'(x_N) = -(f'_B(x))^{-1} f'_N(x).$

Reading Assignment: Lecture-Note 8.