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Optimality Conditions: What We Know So Far

• Necessary optimality conditions for unconstrained optmiza-

tion: ∇f(x) = 0 and D2f(x) � 0.

• Sufficient optimality conditions: ∇f(x) = 0, D2f(x) � 0.

• Sufficiency occurs because D2f(x) � 0 guarantees that f is

locally strictly convex.

• Indeed, if convexity of f is a given, ∇f(x∗) = 0 is a necessary

and sufficient condition.

• In the exercises, we used the fundamental theorem of linear

inequalities to derive the LP duality theorem. This yielded

the necessary and sufficient optimality conditions

ATy = c, y ≥ 0

Ax ≤ b

cTx − bTy = 0

for the LP problem

(P) max
x∈Rn

cTx

s.t. Ax ≤ b.

• Writing (P) in the form

min f(x)

s.t. gi(x) ≥ 0 (i = 1, . . . , m),

the optimality conditions can be rewritten as

∇f(x) −
m
∑

i=1

yi∇gi(x) = 0

gi(x) ≥ 0 (i = 1, . . . , m)

yT(Ax − b) = 0, that is,[ g1(x) ... gm(x) ]y = 0.

• We will see that the last condition could have been strength-

ened to yigi(x) = 0 for all i.

• LP is the simplest example of a constrained convex optimi-

sation problem: minimise a convex function over a convex

domain. Again convexity implies that first order conditions

are enough.



More generally, let

(NLP) min
x∈Rn

f(x)

s.t. gi(x) = 0, (i ∈ E),

gj(x) ≥ 0 (j ∈ I).

The following will emerge under appropriate regularity assump-

tions:

i) Convex problems have first order necessary and sufficient

optimality conditions.

ii) In general problems, second order conditions introduce local

convexity.

I. First Order Necessary Optimality Conditions

Definition 1 Let x∗ ∈ R
n be feasible for the problem (NLP).

We say that the inequality constraint gj(x) ≥ 0 is active at x∗ if

g(x∗) = 0. We write A(x∗) := {j ∈ I : gj(x
∗) = 0} for the set of

indices corresponding to active inequality constraints.

Of course, equality constraints are always active, but we will

account for their indices separately.

If J ⊂ E ∪ I is a subset of indices, we will write

• gJ for the vector-valued map that has gi (i ∈ J ) as compo-

nents in some specific order,

• g for gE∪I.

Definition 2: If {∇gi : i ∈ E ∪ A(x∗)} is a linearly independent

set of vectors, we say that the linear independence constraint

qualification (LICQ) holds at x∗.
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Lemma 1: Let x∗ be a feasible point of (NLP) where the LICQ

holds and let d ∈ Rn be a vector such that

d 6= 0,

dT∇gi(x
∗) = 0, (i ∈ E),

dT∇gj(x
∗) ≥ 0, (j ∈ A(x∗)).

(1)

Then for ε > 0 small enough there exists a path x ∈ Ck
(

(−ε,+ε), Rn
)

such that

x(0) = x∗,

d

dt
x(0) = d,

gi(x(t)) = tdT∇gi(x
∗) (i ∈ E ∪ A(x∗), t ∈ (−ε, ε)),

(2)

so that

gi(x(t)) = 0 (i ∈ E, t ∈ (−ε, ε)),

gj(x(t)) ≥ 0 (j ∈ I, t ≥ 0).

Proof:

• Let l = |A(x∗) ∪ E|. Since the LICQ holds, it is possible to

choose Z ∈ R
(n−l)×n such that

[

DgA(x∗)∪E(x
∗)

Z

]

is a nonsingular

n × n matrix.

• Let h : Rn × R → Rn be defined by

(x, t) 7→
[ gA(x∗)∪E(x)−tDgA(x∗)∪E(x

∗)d

Z(x−x∗−td)

]

• Then Dh(x∗,0) = [ Dxh(x∗,0) Dth(x∗,0) ], where

Dxh(x∗,0) =
[

DgA(x∗)∪E(x
∗)

Z

]

and

Dth(x∗,0) = −
[

DgA(x∗)∪E(x
∗)d

Zd

]

= −Dxh(x∗,0)d

• Since Dxh(x∗,0) is nonsingular, the Implicit Function Theo-

rem implies that for ε̃ > 0 small enough there exists a unique

Ck function x : (−ε̃, ε̃) → Rn and a neighbourhood V(x∗) such

that for x ∈ V(x∗), t ∈ (−ε̃, ε̃),

h(x, t) = 0 ⇔ x = x(t).

• In particular, we have x(0) = x∗ and gi(x(t)) = tdT∇g(x∗) for

all i ∈ A(x∗) ∪ E and t ∈ (−ε̃, ε̃). (1) therefore implies that

gi(x(t)) = 0 (i ∈ E) and gi(x(t)) ≥ 0 (i ∈ A(x∗), t ∈ [0, ε̃)).



• On the other hand, since gi(x
∗) > 0 (i /∈ A(x∗)), the con-

tinuity of x(t) implies that there exists ε ∈ (0, ε̃) such that

gj(x(t)) > 0 (j ∈ I \ A(x∗), t ∈ (−ε, ε)).

• Finally,

d

dt
x(0) = −

(

Dxh(x∗,0)
)−1

Dth(x∗,0) = d

follows from the second part of the Implicit Function Theo-

rem.

Theorem 1: If x∗ is a local minimiser of (NLP) where the LICQ

holds then

∇f(x∗) ∈ cone
(

{±∇gi(x
∗) : i ∈ E} ∪ {∇gj(x

∗) : j ∈ A(x∗)}
)

.

Proof:

• Suppose our claim is wrong. Then the fundamental theorem

of linear inequalities implies that there exists a vector d ∈ Rn

such that

dT∇gj(x
∗) ≥ 0, (j ∈ A(x∗)),

±dT∇gi(x
∗) ≥ 0, (i.e., dT∇gi(x

∗) = 0) (i ∈ E),

dT∇f(x∗) < 0.

• Since d satisfies (1), Lemma 1 implies that there exists a

path x : (−ε, ε) → Rn that satisfies (2).

• Taylor’s theorem then implies that

f(x(t)) = f(x∗) + td∇f(x∗) + O(t2) < f(x∗)

for 0 < t � 1.

• Since (2) shows that x(t) is feasible for t ∈ [0, ε), this con-

tradicts the assumption that x∗ is a local minimiser.

Comments:

• The condition

∇f(x∗) ∈ cone
(

{±∇gi(x
∗) : i ∈ E} ∪ {∇gj(x

∗) : j ∈ A(x∗)}
)

is equivalent to the existence of λ ∈ R
|E∪I| such that

∇f(x∗) =
∑

i∈E∪I

λi∇gi(x
∗), (3)

where λj ≥ 0 (j ∈ A(x∗)) and λj = 0 for (j ∈ I \ A(x∗)).

• x∗ was assumed feasible, that is, gi(x
∗) = 0 for all i ∈ E and

gj(x
∗) ≥ 0 for all j ∈ I.



Thus, Theorem 1 shows that when x∗ is a local minimiser where

the LICQ holds, then the following so-called Karush-Kuhn-Tucker

(KKT) conditions must hold:

Corollary 1: There exist Lagrange multipliers λ ∈ R|I∪E| such

that

∇f(x) −
∑

i∈I∪E

λi∇gi(x) = 0

gi(x) = 0 (i ∈ E)

gj(x) ≥ 0 (j ∈ I)

λjgj(x) = 0 (j ∈ I)

λj ≥ 0 (j ∈ I).

We can formulate this result in slightly more abstract form in

terms of the Lagrangian associated with (NLP):

L : R
n × R

m → R

(x, λ) 7→ f(x) −
m
∑

i=1

λigi(x).

The balance equation

∇f(x) −
∑

i∈I∪E

λi∇gi(x) = 0

says that the derivative of the Lagrangian with respect to the x

coordinates is zero.

Putting all the pieces together, we obtain the following result:

Corollary 2: First Order Necessary Optimality Conditions.

If x∗ is a local minimiser of (NLP) where the LICQ holds then

there exists λ∗ ∈ R
m such that (x∗, λ∗) solves the following system

of inequalities,

DxL(x∗, λ∗) = 0,

λ∗
j ≥ 0 (j ∈ I),

λ∗
i gi(x

∗) = 0 (i ∈ E ∪ I),

gj(x
∗) ≥ 0 (j ∈ I),

gi(x
∗) = 0 (i ∈ E).

Mechanistic Motivation of KKT Conditions:

A useful picture in unconstrained optimisation is to imagine a

point mass m or an infinitesimally small ball that moves on a

hard surface

F :=
{

(x, f(x)) : x ∈ R
n
}

without friction.
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• The external forces acting on the point mass are the gravity

force m~g =
(

0
−mg

)

and the reaction force

~Nf =
mg

1 + ‖∇f(x)‖2

(

−∇f(x)
1

)

.

• The total external force

~R = m~g + ~Nf =
mg

1 + ‖∇f(x)‖2

[

−∇f(x)

−‖∇f(x)‖2

]

⊥ ~Nf

equals zero if and only if ∇f(x) = 0 (i.e., a stationary point).

• When the test mass is slightly moved from a local maximiser,

then the external forces will pull it further away.

• In a neighbourhood of a local minimiser they will restore the

point mass to its former position.

• This is expressed by the second order optimality conditions:

an equilibrium position is stable if D2f(x) � 0 and instable if

D2f(x) ≺ 0.

Extension to constrained optimisation:

We can interpret an inequality constraint g(x) ≥ 0 as a hard

smooth surface

G :=
{

(x, z) ∈ R
n × R : g(x) = 0

}

that is parallel to the z-axis everywhere and keeps the point mass

from rolling into the domain where g(x) < 0.

Such a surface can exert only a normal force that points towards

the domain {x : gj(x) > 0}.

Therefore, the reaction force must be of the form ~Ng = µg

(

∇g(x)
0

)

,

where µg ≥ 0.
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• In the picture the point mass is at rest and does not roll to

lower terrain if the sum of external forces is zero, that is,
~Nf + ~Ng + m~g = 0.

• Since ~Nf = µf

(

−∇f(x)
1

)

for some µf ≥ 0, we find

µf

[

−∇f(x)
1

]

+ µg

[

∇g(x)
0

]

+

[

0
−mg

]

= 0,

from where it follows that µf = mg and

∇f(x) = λ∇g(x) (4)

with λ = µ/mg ≥ 0.

• When multiple inequality constraints are present, the the bal-

ance equation (4) must thus be replaced with

∇f(x) =
∑

j∈I

λj∇gj(x)

for some λj ≥ 0.

• Since constraints for which gj(x) > 0 cannot excert a force

on the test mass, we must set λj > 0 for these indices, or

equivalently, the equation λjgj(x) = 0 must hold for all j ∈ I.

What about equality constraints?

Replacing gi(x) = 0 by the two inequality constraints gi(x) ≥ 0

and −gi(x) ≥ 0, our mechanistic interpretation yields two parallel

surfaces G+
i and G−

i , leaving an infinitesimally thin space between

them within which our point mass is constrained to move.

−N

N

G−

G+



The net reaction force of the two surfaces is of the form

λ+
i ∇gi(x) + λ−

i ∇(−gi)(x) = λi∇gi(x),

where we replaced the difference λ+
i −λ−

i of the bound-constrained

variables λ+
i , λ−

i ≥ 0 by a single unconstrained variable λi =

λ+
i − λ−

i .

Note that in this case the conditions λ+
i gi(x) = 0, λ−

i (−gi(x)) = 0

are satisfied automatically, since gi(x) = 0 if x is feasible.
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There are situations in which our mechanical picture is flawed:

if two inequality constraints have first order contact at a local

minimiser then they cannot annul the horizontal part of ~Nf .

When there are more constraints constraints, then generalisa-

tions of this situation can occur. In order to prove the KKT

conditions, we must therefore make a regularity assumption like

the LICQ.

Reading Assignment: Lecture-Note 9.


