First Order Optimality Conditions for
Constrained Nonlinear Programming

Lecture 9, Continuous Optimisation
Oxford University Computing Laboratory, HT 2006
Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

In the exercises, we used the fundamental theorem of linear
inequalities to derive the LP duality theorem. This yielded
the necessary and sufficient optimality conditions

ATy=c, y>0
Ax <b
Tz — bTy =0
for the LP problem

(P) max ¢z
zeR™

s.t. Az <b.

Writing (P) in the form

min f(x)
s.t. gi(z) >0 (i=1,...,m),

Optimality Conditions: What We Know So Far

Necessary optimality conditions for unconstrained optmiza-
tion: Vf(z) =0 and D2f(z) > 0.

Sufficient optimality conditions: Vf(z) =0, D2f(z) > O.

Sufficiency occurs because D2f(z) > 0 guarantees that f is
locally strictly convex.

Indeed, if convexity of f is a given, Vf(z*) = 0 is a necessary
and sufficient condition.

the optimality conditions can be rewritten as

Vi@ - Y uiVaie) =0

=1
gi(x) >0 (i=1,...,m)
y' (Az —b) = 0, that is,[g¢1(z) ... gm(z)]y = O.

We will see that the last condition could have been strength-
ened to y,g;(x) = 0 for all i.

LP is the simplest example of a constrained convex optimi-
sation problem: minimise a convex function over a convex
domain. Again convexity implies that first order conditions
are enough.



More generally, let
(NLP) min f(x)
zeR"
s.t. gi(z)=0, (€&,
gj(x) >0 (j€I).

The following will emerge under appropriate regularity assump-
tions:

i) Convex problems have first order necessary and sufficient
optimality conditions.

ii) In general problems, second order conditions introduce local
convexity.

If 7 C £UT is a subset of indices, we will write

e g7 for the vector-valued map that has g; (i € J) as compo-
nents in some specific order,

e g for geuz.

Definition 2: If {Vg; : ¢ € £U A(z*)} is a linearly independent
set of vectors, we say that the linear independence constraint
qualification (LICQ) holds at z*.

I. First Order Necessary Optimality Conditions

Definition 1 Let z* € R" be feasible for the problem (NLP).
We say that the inequality constraint gj(m) > 0 is active at z* if
g(xz*) = 0. We write A(z*) :={j € Z: gj(z*) = 0} for the set of
indices corresponding to active inequality constraints.

Of course, equality constraints are always active, but we will
account for their indices separately.
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Proof:

o Let I = [A(z*) UE|. Since the LICQ holds, it is possible to
choose Z € R(n=DXn gych that DgA(w’}U«g(“’ )] is a nonsingular
n X n matrix.

o Let h:R"” x R — R" be defined by
(z,t) — {gA(z*)US(x)_thA(E*)Ug(x‘*)d

Z(z—x*—td)
e Then Dh(gg*,O) = [Dzh(x*,O) Dth(m*,O)], where
Dzh(z*,0) = [DQA(x’}us(I*)] and
PG 0) = [P = o

Lemma 1: Let z* be a feasible point of (NLP) where the LICQ
holds and let d € R™ be a vector such that

d#0,
d"Vvg;(z*) =0, (i€ &), (1)
d"Vg;(z*) > 0, (j € A(")).

Then for e > 0 small enough there exists a path z € C’k<(—e, —|—e),]R{”>
such that

z(0) = =¥,
“2(0) =, (2)
gi(z(t)) =td"Vg;(z*) (i € EUA(z"),t € (—¢,€)),
so that

9i(@(t)) =0 (€& te(—ce),
gj(@()) 20 (j€Z,t>0).

e Since Dgzh(z*,0) is nonsingular, the Implicit Function Theo-
rem implies that for € > 0 small enough there exists a unique
Ck function z : (—¢€,€) — R™ and a neighbourhood % (z*) such
that for x € U(z*), t € (¢, 8),

h(z,t) =0 < z = z(t).

e In particular, we have z(0) = z* and g;(z(t)) = td" Vg(z*) for
all i € A(z*) U €& and t € (—=¢€,€). (1) therefore implies that
gi(z(t)) =0 (i € €) and g;(z(t)) > 0 (i € A(z¥),t € [0,€)).



e On the other hand, since g;(z*) > 0 (i ¢ A(z*)), the con-
tinuity of z(¢t) implies that there exists ¢ € (0,€) such that

gj(x()) >0 (j €T\ A(z"),t € (—¢,€)).

e Finally,

%x(O) = _(Dmh(x*,O))*lDth(x*,O) =d

follows from the second part of the Implicit Function Theo-

rem.

[]

e Since d satisfies (1), Lemma 1 implies that there exists a

path z : (—e,e) — R™ that satisfies (2).

e Taylor's theorem then implies that

() = f(z*) + tdV f(z*) + O(t?) < f(z*)
forO<tk 1.

e Since (2) shows that z(t) is feasible for ¢ € [0,¢), this con-

tradicts the assumption that z* is a local minimiser.

[]

Theorem 1: If z* is a local minimiser of (NLP) where the LICQ
holds then

V§(z*) € cone ({£Vg;(z*) : i € E}U{Vg;(z") : j € Az")}).
Proof:

e Suppose our claim is wrong. Then the fundamental theorem
of linear inequalities implies that there exists a vector d € R"
such that

dTvgi(z*) >0,  (j €A@Y,
+d"Vg;(z*) >0, (i.e., d' Vg(z*) =0) (i €&),
dTVf(z*) <o.

Comments:

e The condition
Vf(z*) € cone <{:i:Vgi(x*) Lie EYU{Vg (@) je A(:c*)})
is equivalent to the existence of A € RI€YZl such that

Vi) = Y AV, (3)

icEUT
where \; > 0 (j € A(z*)) and \; =0 for (j € Z\ A(z")).

e r* was assumed feasible, that is, g;(z*) = 0 for all 4 € £ and
gj(z*) >0 for all j €.



Thus, Theorem 1 shows that when z* is a local minimiser where
the LICQ holds, then the following so-called Karush-Kuhn-Tucker
(KKT) conditions must hold:

Corollary 1: There exist Lagrange multipliers X € RZYEl such
that
Vi) — Y A\Vgi(z)=0
i€TUE
gi(x) =0 (ieéf)
gj(z) >0 GeD
Ajgj(z) =0 e
A>0 (e

Corollary 2: First Order Necessary Optimality Conditions.
If z* is a local minimiser of (NLP) where the LICQ holds then
there exists A\* € R™ such that (z*, A\*) solves the following system
of inequalities,

D L(z*, \*) =0,

Xi>0 (jed),
M) =0 (icEUT),
gi(z*) >0 (j €I,
gi(z*) =0 (i€é).

We can formulate this result in slightly more abstract form in
terms of the Lagrangian associated with (NLP):

L:R"xR™ SR
@A) £@) = 3 higi(e)

=1

The balance equation

V@) — Y XNVgi(z)=0

i€ETUE
says that the derivative of the Lagrangian with respect to the x
coordinates is zero.

Putting all the pieces together, we obtain the following result:

Mechanistic Motivation of KKT Conditions:

A useful picture in unconstrained optimisation is to imagine a
point mass m or an infinitesimally small ball that moves on a
hard surface

F:= {(x,f(ac)) = R”}

without friction.



e When the test mass is slightly moved from a local maximiser,
then the external forces will pull it further away.

e In a neighbourhood of a local minimiser they will restore the
point mass to its former position.

e This is expressed by the second order optimality conditions:
an equilibrium position is stable if D2f(z) = 0 and instable if
D2f(z) < 0.

e The external forces acting on the point mass are the gravity
force mg = <,9ng> and the reaction force

V,—_ ™9 (-Vf(z)
Ny = .
! 1+||Vf(:c)||2< {)
e The total external force
- I mg -V f(z) } -
R = Ny=——— " 1N
mIt N = v {—IIVf(:z:)II2 J

equals zero if and only if Vf(xz) = 0 (i.e., a stationary point).

Extension to constrained optimisation:

We can interpret an inequality constraint g(x) > 0 as a hard
smooth surface

G .= {(x,z)ERan: g(x)=0}

that is parallel to the z-axis everywhere and keeps the point mass
from rolling into the domain where g(z) < 0.

Such a surface can exert only a normal force that points towards
the domain {z : g;(x) > 0}.

Therefore, the reaction force must be of the form Ny = pug( V9§2)),
where pg > 0.



e When multiple inequality constraints are present, the the bal-
ance equation (4) must thus be replaced with

Vi) = \jVgj(z)
JET
for some A; > 0.

e Since constraints for which g;(z) > 0 cannot excert a force
on the test mass, we must set /\j > 0 for these indices, or
equivalently, the equation A;g;(x) = 0 must hold for all j € Z.

e In the picture the point mass is at rest and does not roll to
lower terrain if the sum of external forces is zero, that is,
Ny + Ng + mg = 0.

e Since N; = uf(*V{(I)) for some i > 0, we find
o | O [0+ [0 <o

from where it follows that py = mg and

Vi(z) = AVg(x) (4)
with A = p/mg > 0.

What about equality constraints?

Replacing g;(z) = 0 by the two inequality constraints g;(z) > 0
and —g;(z) > 0, our mechanistic interpretation yields two parallel
surfaces GZT" and G, leaving an infinitesimally thin space between
them within which our point mass is constrained to move.




The net reaction force of the two surfaces is of the form

AVgi(2) + ATV (—g:) (2) = A\ Vgi(a),

where we replaced the difference A;F—Ai_ of the bound-constrained
variables A;F,Ai_ > 0 by a single unconstrained variable \;, =
PR

Note that in this case the conditions )\j—gi(az) =0, )\ (—gi(x))=0
are satisfied automatically, since g;(x) = 0 if z is feasible.

There are situations in which our mechanical picture is flawed:
if two inequality constraints have first order contact at a local
minimiser then they cannot annul the horizontal part of J\7f.

When there are more constraints constraints, then generalisa-
tions of this situation can occur. In order to prove the KKT
conditions, we must therefore make a regularity assumption like
the LICQ.
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