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Optimality Conditions: What We Know So Far

e Necessary optimality conditions for unconstrained optmiza-
tion: Vf(z) =0 and D2f(z) = 0.

e Sufficient optimality conditions: Vf(z) = 0, D?f(z) > O.

e Sufficiency occurs because D?f(z) = O guarantees that f is
locally strictly convex.

e Indeed, if convexity of f is a given, Vf(x*) = 0 is a necessary
and sufficient condition.



e In the exercises, we used the fundamental theorem of linear
inequalities to derive the LP duality theorem. This vielded
the necessary and sufficient optimality conditions

ATy =c, y=>0
Ax < b
cla— bTy =0
for the LP problem

(P) max c'z
rxeR"

s.t. Ax <b.

e Writing (P) in the form

min f(x)
s.t. gj(x) >0 (G=1,...,m),



the optimality conditions can be rewritten as

Vi) - > uiVai) =0
1=1
gi(z) >0 (i=1,...,m)

yT(A.CU — b) = 0, that iS,[gl(:B) gm(x)]y = 0.

e \We will see that the last condition could have been strength-
ened to y;g;(x) = 0 for all 1.

e LP is the simplest example of a constrained convex optimi-
sation problem: minimise a convex function over a convex
domain. Again convexity implies that first order conditions
are enough.



More generally, let

(NLP)  min f(x)

s.t. g;(x)=0, ((1€€&),
gj(x) >0 (je€I).

The following will emerge under appropriate regularity assump-
tions:

i) Convex problems have first order necessary and sufficient
optimality conditions.

ii) In general problems, second order conditions introduce local
convexity.



I. First Order Necessary Optimality Conditions

Definition 1 Let z* € R"™ be feasible for the problem (NLP).
We say that the inequality constraint g;(z) > 0 is active at z* if
g(z*) = 0. We write A(z*) :={j € T: gj(«*) = 0} for the set of
indices corresponding to active inequality constraints.

Of course, equality constraints are always active, but we will
account for their indices separately.



If 7 C £UT is a subset of indices, we will write

e g7 for the vector-valued map that has g; (: € J) as compo-
nents in some specific order,

e g for ge 7.

Definition 2: If {Vyg; : i € £ U A(z™)} is a linearly independent
set of vectors, we say that the linear independence constraint
qualification (LICQ) holds at x*.
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Lemma 1: Let z* be a feasible point of (NLP) where the LICQ
holds and let d € R™ be a vector such that

d # 0,
dTVgi(a:*) =0, (1€ &), (1)
d'vg;(z*) >0, (j € A(z")).

Then for e > 0 small enough there exists a path x &€ C’k((—e, —|—e),R”>
such that

z(0) = z*,
d 0) =d 2
dtx( ) = d, (2)
gi(z(¥)) = td'Vgi(z*) (i € EUA(z®),t € (—¢¢)),

soO that

9i(x(t)) =0 (€& te(—€e¢)),
gj(@(t)) 20 (j€Z,t>0).



Proof:

o Let | = |A(x*) U&|. Since the LICQ hold*s, it is possible to
choose Z ¢ R("=DXn gych that [DQA(SC*}US(‘” )] is a nonsingular
n X n matrix.

o Let h: R" xR — R" be defined by
(z,t) — [QA(:c*)Ug(a:)—thA(x*)Ug(ac*)d]

Z(x—x*—td)
e Then Dh(x* 0) = [ Dzh(z*,0) Dih(z*,0)], where
Dgh(x*,0) = [Dgfl(w’}ug(x*)] and



e Since D h(x*,0) is nonsingular, the Implicit Function Theo-
rem implies that for € > 0 small enough there exists a unique
C* function z : (=€,&) — R"™ and a neighbourhood U(z*) such
that for x € U(z*), t € (—¢,9),

h(x,t) =0 2 = z2(t).

e In particular, we have z(0) = z* and g¢;(x(¢)) = td " Vg(a*) for
all : € A(z*) U €& and t € (—¢,€). (1) therefore implies that
gi(z(t)) =0 (¢ € €) and g;(z(t)) = 0 (i € A(z"),t € [0,¢€)).



e On the other hand, since g;(z*) > 0 (¢« ¢ A(x*)), the con-
tinuity of z(t) implies that there exists ¢ € (0,€) such that

gi(x(t)) >0 (j €T\ A(z"),t € (—¢,¢€)).

e Finally,

%x(O) — —(Duh(2",0)) " Deh(a*,0) = d

follows from the second part of the Implicit Function Theo-
rem. [ ]



Theorem 1: If z* is a local minimiser of (NLP) where the LICQ
holds then

Vf(z*) € cone ({£Vgi(z*) : i € £} U{Vg;(z*) : j € A(z*)}).

Proof:

e Suppose our claim is wrong. Then the fundamental theorem
of linear inequalities implies that there exists a vector d € R"
such that

d'Vg;(z*) >0, (j € A(z*)),
+d"Vg;(z*) >0, (i.e., d'Vg(z*) =0) (i € &),
d'Vf(z*) < 0.



e Since d satisfies (1), Lemma 1 implies that there exists a
path z : (—e¢,¢) — R™ that satisfies (2).

e [avlor's theorem then implies that

f(z(t)) = f(z*) + tdV f(z*) + O(t?) < f(z*)
for 0 <t <K 1.

e Since (2) shows that x(t) is feasible for t € [0,¢), this con-
tradicts the assumption that z* is a local minimiser. [ ]



Comments:

e [ he condition
V£ (z*) € cone <{:I:ng-(a:*) i€ EYU{Vgi(a*): j € .A(a:*)})
IS equivalent to the existence of A\ € RI€YI] such that

Vi) = ) A\Vg(a"), (3)

i€EUT
where A; >0 (5 € A(z*)) and X\; =0 for (j € Z\ A(z")).

e x* was assumed feasible, that is, g;(z*) = 0 for all i € £ and
gj(z*) >0 for all j € 7.



Thus, Theorem 1 shows that when z* is a local minimiser where
the LICQ holds, then the following so-called Karush-Kuhn-Tucker
(KKT) conditions must hold:

Corollary 1: There exist Lagrange multipliers \ & RIZVE] such
that

Vi(x)— >, AVgi(z) =0

iCTUE
gi(x) =0 (i€&)
gi(z) >0 (j€I)
Ajgi(x) =0 (J €1)
)\j >0 (1 €T).



We can formulate this result in slightly more abstract form in
terms of the Lagrangian associated with (NLP):

L:R"xR™ 5 R
(z,A) — f(z) = > Ngi(z).
i=1

T he balance equation

Vi(x)— > X\Vgi(z) =0

i€ETUE
says that the derivative of the Lagrangian with respect to the x
coordinates is zero.

Putting all the pieces together, we obtain the following result:



Corollary 2: First Order Necessary Optimality Conditions.
If 2* is a local minimiser of (NLP) where the LICQ holds then
there exists \* € R™ such that («*, \*) solves the following system

of inequalities,

Do L(z*, \*) =0,
;>0 (§eD),
Agi(z®) =0 (ie€fUl),
gi(z*) >0 (jeI),
9;(x") =0 (i€é&).



Mechanistic Motivation of KKT Conditions:

A useful picture in unconstrained optimisation is to imagine a
point mass m or an infinitesimally small ball that moves on a

hard surface
= {(m,f(a:)) Lz € R”}

without friction.






e [ he external forces acting on the point mass are the gravity

force mg = (_%g) and the reaction force

N = g ~V (@)
N, = )
/ 1+||Vf<a:>||2( {)

e [ he total external force

5 . mg ~Vf(x)
R=mg+ N =1 S )P [—nwuw?

equals zero if and only if Vf(x) = 0 (i.e., a stationary point).
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e \When the test mass is slightly moved from a local maximiser,
then the external forces will pull it further away.

e In a neighbourhood of a local minimiser they will restore the
point mass to its former position.

e [ his is expressed by the second order optimality conditions:
an equilibrium position is stable if D2f(x) = 0 and instable if
D?f(x) < O.



Extension to constrained optimisation:

We can interpret an inequality constraint g(x) > 0 as a hard
smooth surface

G .= {(w,z) cR" xR : g(a:)zO}

that is parallel to the z-axis everywhere and keeps the point mass
from rolling into the domain where g(x) < 0.

Such a surface can exert only a normal force that points towards
the domain {z : g;(z) > 0}.

Therefore, the reaction force must be of the form N, = Mg(véléa?) )
where pg > 0.
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mg

x2



e In the picture the point mass is at rest and does not roll to
lower terrain if the sum of external forces is zero, that is,
Nf + Ng +mg = 0.

e Since ]\7f = ,uf(—V{(af)) for some pr > 0, we find

iy [_V{(@] + g Vgéx>] + [_Sng] =0,

from where it follows that uy = mg and

Vf(x) = AVg(x) (4)

with A = u/mg > 0.



e VWhen multiple inequality constraints are present, the the bal-
ance equation (4) must thus be replaced with

Vi@) =) XVg(z)
JET
for some Aj = 0.

e Since constraints for which g;(z) > 0 cannot excert a force
on the test mass, we must set Aj > 0 for these indices, or
equivalently, the equation )\jgj(:v) = 0 must hold for all j € 7.



What about equality constraints?

Replacing g;(x) = 0 by the two inequality constraints g;(z) > 0O
and —g;(x) > 0, our mechanistic interpretation yields two parallel
surfaces GZTF and G, , leaving an infinitesimally thin space between
them within which our point mass is constrained to move.




The net reaction force of the two surfaces is of the form

ATV gi(x) + A7V (—g:)(x) = \iVg;(2),

where we replaced the difference A;"—AZ-_ of the bound-constrained

variables A;",Ai_ > 0 by a single unconstrained variable \; =
A=

Note that in this case the conditions )\j_gi(:c) =0, A\, (—gi(x)) =0
are satisfied automatically, since g;(x) = 0 if z is feasible.
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There are situations in which our mechanical picture is flawed:
if two inequality constraints have first order contact at a local
minimiser then they cannot annul the horizontal part of ]\7f.

When there are more constraints constraints, then generalisa-
tions of this situation can occur. In order to prove the KKT
conditions, we must therefore make a regularity assumption like
the LICQ.



Reading Assignment: Lecture-Note 9.



