
SECTION C: CONTINUOUS OPTIMISATION

LECTURE 1: INTRODUCTION

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2005, DR RAPHAEL HAUSER

1. The Central Subject of this Course. The engineer who designs an aircraft
with minimal drag given the required lift force, the manager who maximises profit
within constraints imposed by the available resources, the bicycle courier who seeks
the shortest path between two points in a city, and your cup of tea that cools down
to maximise the entropy in the universe all solve optimisation problems! The world
is full of them.

Mathematically, we can formulate an important class of such problems as follows:

(P) min
x∈Rn

f(x)

s.t. gi(x) ≥ 0, (i = 1, . . . , p),

hj(x) = 0, (j = 1, . . . , q),

where f, gi and hj are sufficiently smooth functions: typically we require them to be
twice continuously differentiable.

The function f represents an objective (such as energy, cost etc.) that has to be
minimised under side constraints defined by the functions gi and hj . We therefore
call f the objective function, the functions gi the equality constraint functions, and
the functions hj the inequality constraint functions of (P). Note that by replacing f
by −f we can of course treat maximisation problems in the same framework.

Example 1.1 (Linear Programming). The transshipment problem occurs when
the cheapest way of shipping prescribed amounts of a commodity across a transporta-
tion network has to be determined. This can be a network of oil pipe lines, a computer
network, a network of shipping lanes, a road network etc..

A network of gas pipelines is given in Figure 1.1 An arrow from node i to node j

6

5

4

3

2

1

Fig. 1.1. Gas pipeline network

represents a pipe with transport capacity cij in the given direction. Transporting one

1

unit of gas along the edge (ij) costs dij . The amount of gas produced at node i is pi,
and the amount of gas consumed is qi. We assume that the total amount consumed
equals the total amount of gas produced (if this assumption were not true, we could
construct an equivalent transshipment problem that has this property). How do the
quantities xij of gas shipped along the edges (ij) to be chosen so as to satisfy all the
demands and to minimise costs?

We set cij = 0 (and dij arbitrary numbers) for all edges (ij) that do not exist.
Doing so, we can assume that the network is a complete graph. The problem we have
to solve is the following:

min
x

6
∑

i,j=1

dijxij

s.t.

6
∑

k=1

xki + pi =

6
∑

j=1

xij + qi, (i = 1, . . . , 6),

0 ≤ xij ≤ cij , (i, j = 1, . . . , 6).

This is an example of a linear programming problem, as the objective function
and all the constraint functions are linear.

Note that it is not a priori clear that this problem has feasible solutions. One is
therefore interested in algorithms that not only find optimal LP solutions when these
exist but also detect when a problem instance is infeasible!

Example 1.2 (Quadratic Programming). In the portfolio optimisation problem,
an investor considers a fixed time interval and wishes to decide which fraction of the
capital he/she wants to invest in each of n different given assets when the expected
return of asset i is µi and the covariance between assets i and j is σij . The vector
µ = [µi] and the matrix σ = [σij] are assumed to be known and the investor aims at a
total return of at least b. Subject to this constraint, he/she aims to minimise the risk
as quantified by the variance of the overall portfolio.

This problem can be modelled as

min
x∈Rn

n
∑

i=1

n
∑

j=1

σijxixj

s.t.
n

∑

i=1

µixi ≥ b,

n
∑

i=1

xi = 1,

xi ≥ 0 (i = 1, . . . , n).

The constraint
∑n

i=1
xi = 1 expresses the requirement that 100% of the initial capital

has to be invested.

Example 1.3 (Semidefinite Programming). In optimal control, variables y1, . . . , ym

have to be chosen so as to design a system that is driven by the linear ODE

u̇ = M(y)u,

2

where M(y) =
∑m

i=1
yiAi + A0 is an affine combination of given symmetric matrices

Ai (i = 0, . . . , m). To stabilise the system, one would like to choose y so as to min-
imise the largest eigenvalue of M(y).

Note that λ1(M) ≤ η if and only if η I−M � 0 (is positive semidefinite). There-
fore, the problem we need to solve is

max
η,y
− η

s.t. η I−A0 −

m
∑

i=1

yiAi � 0.

Example 1.4. An engineer designs a system determined by two design variables
x and y which are dependent on each other via the relation xy = 1. The energy
consumed by the system is given by E(x, y) = x2 + y2 − 4. Furthermore, the physical
properties of materials used impose the constraints x ∈ [0.5, 3]. The engineer wishes
to design a system that consumes the smallest amount of energy among all admissible
systems.

This problem can be formulated as

(P) min
x,y

x2 + y2 − 4

s.t. x− 0.5 ≥ 0,

− x + 3 ≥ 0,

x−1 − y = 0.

The objective function is f(x, y) = x2 + y2 − 4, the inequality constraint functions
are g1(x, y) = x − 0.5 and g2(x, y) = −x + 3, and the equality constraint function is
h(x, y) = x−1 − y.

1.1. Learning Goals. The aim of this course is to teach you how to solve such
problems numerically on a computer. But rather than programming efficient code
(which is challenging in its own right), we concentrate on the theoretical properties
of prototype algorithms. Moreover, in order to derive the mathematical building
blocks of algorithms, we will have to derive mathematical conditions that characterise
the points x∗ at which (P) is minimised (the so-called minimisers or argmins of the
problem).

For those of you who have never taken a course on numerical analysis, arguing
about algorithms will at first have a strange new flavour: in principle, algorithms are
mathematical functions that relate turn input values into an output. However, these
functions cannot in general be written down in terms of a closed-form formula. In-
deed, the computation path might be different for different input values (there might
be conditional statements in the algorithm), and the computation may contain loops
(iterations) the number of which may again depend on the input values and not be
known a priori. Therefore, proving theorems about algorithms is much like proving
theorems about mathematical formulas, but typically messier because many different
scenarios might have to be analysed exhaustively.

3

Among the properties of algorithms that are most often analysed in theorems we
can single out three important groups:

Correctness: Does the algorithm compute the claimed input-output relation for
all input values? This is like proving that a mathematical equation or inequality holds
true, where one side of the relation can be seen as the function of interest and the
other as the computational rule or algorithm.

Complexity: How many computer operations will running the algorithm require
as a function of the input data? Since this cannot usually be determined exactly for
all input values, one is often interested either in the worst case that can occur or in
an average case under some probability distribution over the input values. Moreover,
when an algorithm can be run on input data of various dimensions, one quantifies
the worst-case complexity as a function of the problem dimension or another measure
of input size. Finally, when a numerical algorithm proceeds by iteratively improving
approximations to the true (theoretical) solution of a problem, the complexity is
usually analysed in terms of the number of computer operations per iteration and the
convergence speed or convergence rate of the algorithm.

Reliability: Is there a guarantee of how accurately the final result of the algorithm
approximates the true solution of the problem? Does this guarantee hold for a large set
of input data, or are there domains in the input space for which the algorithm struggles
to compute an accurate solution? How do rounding errors affect the computation?

2. Prerequisite Knowledge. Only linear algebra and multivariate calculus are
required to understand this course. A course in numerical linear algebra or in numer-
ical analysis helps in understanding some of the deeper issues but is not absolutely
essential. Everything else will be developed from first principles. We will spend the
remainder of this first lecture to discuss some important preliminary concepts. Other
notions will be introduced if an when we need them.

2.1. Local versus Global Optimality. Let us first explain what we mean by
“optimal solution” to the problem (P). A point x ∈ R

n is feasible for the optimisation
problem (P) if gi(x) ≥ 0 ∀i and hj(x) = 0 ∀j, that is, if x satisfies all the constraints
of the problem. The set F of feasible points is called the domain of feasibility of (P).
A feasible point x∗ is a local minimiser if there exists a ball Bε(x

∗) around x∗ such
that

f(x∗) ≤ f(x) ∀x ∈ Bε(x
∗) ∩ F ,

that is, x∗ is a minimiser amongst all the feasible points in a neighbourhood of x∗,
but there might be feasible points further away from x∗ where the objective function
takes an even smaller value. A feasible point x∗ is a global minimiser if

f(x∗) ≤ f(x) ∀x ∈ F ,

that is, x∗ minimises the objective function amongst all feasible points of the problem,
although there might exist several of these points.

Example 2.1. The problem

(P) min
x∈R

f(x) = x3 + 9x2

s.t. − 10 ≤ x ≤ 2

4

has a local minimiser at x = 0, and a global minimiser at x∗ = −10, see Figure 2.1.

−10 −8 −6 −4 −2 0 2
−100

−50

0

50

100

150

Fig. 2.1. Objective function of Example 2.1

In the general framework, efficient algorithms can only be devised for the problem
of finding a local minimiser. The problem of finding a global minimiser is extremely
important in practise, but its solution is typically based on heuristics that rely on
local minimisation as a subproblem. We therefore restrict the material of this course
to local minimisation.

A slightly confusing terminology is the following: an iterative algorithm for solv-
ing (P) converges globally if the output sequence (xk)N converges to a local minimiser
x∗ for all starting points x0 ∈ F . On the other hand, an iterative algorithm is called
locally convergent if the output sequence (xk)N converges to a local minimiser x∗ for
all feasible starting points x0 close enough to x∗, that is, for all x0 ∈ Br(x

∗) ∩ F for
some r > 0.

Example 2.2. Let us go back to the problem of Example 2.1 and consider the
following algorithm:

S0 Choose x0. Set α = 1, k = 0.
S1 x = xk + αf ′(xk).
S2 If x is feasible then goto S3, else α← α/2 and goto S1.
S3 Set xk+1 = x, k ← k + 1, α = 1, and goto S1.

This algorithm converges to the local minimiser x∗ = 0 for all starting points
x0 ∈ (−6, 2], and to the global minimiser x∗ = −10 for x0 ∈ [−10,−6). For x0 = −6
it remains stuck. If we exclude x0 as a starting point, then this algorithm is globally
convergent, even though it only converges to local minimisers! The focus here is that
the algorithm converges no matter what the starting point is.

On the other hand, if we omit the judicious choice of α, we obtain the following
algorithm:

S0 Choose x0. Set k = 0.
S1 Set xk+1 = xk + f ′(xk), k ← k + 1, and goto S1.

5

This algorithm converges locally to the local minimiser x∗ = 0, but for values x0 < −6
the algorithm diverges to −∞ and becomes infeasible instead of finding the local (and
global) minimiser x∗ = −10.

2.2. Convergence Rates. Since much of numerical analysis is devoted to the
construction of algorithms that converge quickly, we should be able to quantify con-
vergence speed.

A converging sequence (xk)N → x∗ has Q-convergence rate r ≥ 1 (Q stands for
“quotient”) if ∃ρ > 0 and k0 ∈ N such that

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖r, ∀k ≥ k0.

Note that when r = 1, only bounds with ρ < 1 are useful. If r = 1 or r = 2 we
speak of Q-linear and Q-quadratic convergence respectively. Finally, (xk)N converges
Q-superlinearly if

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖
= 0.

Example 2.3. Let z ∈ (0, 1) and consider the sequence (xk)N defined by

xk :=
k

∑

n=0

zn.

Then (xk)N converges Q-linearly but not Q-superlinearly to x∗ = (1 − z)−1. Indeed,
we have |xk − x∗| =

∑∞

n=k+1
zn. Therefore,

|xk+1 − x∗|

|xk − x∗|
= z < 1,

which shows the claim.

We say that an iterative algorithm has Q-convergence rate r if every output
sequence produced by it converges at least at the Q-convergence rate r.

The practical significance of Q-linear convergence is that asymptotically the point
xk+1 approximates x∗ with log10 ρ more correct digits than xk. This means that the
number of correct digits grows linearly in the number of iterations taken. For Q-
convergence of order r on the other hand, the number of additional correct digits
asymptotically grows by a factor of r, that is, the number of correct digits is expo-
nential in the number of iterations taken and the convergence is super fast.

In practice, Q-convergence of any order r > 1 is qualitatively similar to conver-
gence of any other order because applying an order r algorithm j steps at a time
yields an order rj algorithm.

2.3. Convex Sets. The notion of convexity plays a central role in optimisation.
A set C ⊆ R

n is convex if

x, y ∈ C ⇒ λx + (1− λ)y ∈ C ∀λ ∈ [0, 1],

that is, if the straight line segment joining any two elements of C lies in C. The
empty set, half spaces {x : aTx ≥ 0}, polyhedra {x : Ax ≥ b}, open balls Bρ(x̄) =

6

{x : ‖x− x̄‖ < ρ}, ellipsoids {x : xTBx ≤ r} (with B a positive definite matrix) and
affine subspaces {x : aTx = b} are all examples of convex sets.

If C, D ⊆ R
n are convex sets, λ ∈ R and ϕ : R

n → R
m is a linear map, then

C + D := {x + y : x ∈ C, y ∈ D}, λC := {λx : x ∈ C}, ϕ(C) := {ϕ(x) : x ∈ C} and
C ∩D are convex sets.

2.4. Convex Functions. Functions f : R
n → (−∞, +∞] into the real line

extended by +∞ are called proper. A proper function is convex if its epigraph

epi(f) :=
{

(x, z) ∈ R
n+1 : f(x) ≤ z

}

is a convex set in R
n+1.

A proper function f (assumed to be defined on all of R
n) is convex if and only if

f
(

λx + (1− λ)y
)

≤ λf(x) + (1− λ)f(y) (2.1)

for all x, y ∈ R
n, λ ∈ [0, 1]. If this becomes a strict inequality < for all λ ∈ (0, 1) we

say that f is strictly convex.
If f is convex then its effective domain dom(f) := {x : f(x) < +∞} is a convex

set in R
n. On the other hand, we call any function f : C → R which is defined on a

convex set C and satisfies (2.1) for all x, y ∈ C and λ ∈ [0, 1] convex, and any such
function can be extended to a convex proper function by setting f(x) := +∞ for all
x /∈ C.

If f and g are convex proper functions then so are f + g and λf for any λ ≥ 0. If
F is a set of convex proper functions then the pointwise supremum

sup
F

: x 7→ sup{f(x) : f ∈ F}

is a convex proper function. In particular, the pointwise maximum of finitely many
convex proper functions is convex.

If f is a convex proper function then all its level sets {x : f(x) ≤ z} (where
z ∈ (−∞, +∞] is fixed) are convex. Any convex proper function f is continuous on
the topological interior intr

(

dom(f)
)

of its effective domain.
A proper function g : R

n → [−∞, +∞) or a function g : C → [−∞, +∞) defined
on a convex set is called concave if −g is convex.

Theorem 2.4 (First order differential properties of convex functions).
Let f : D → R be a function defined on a convex open domain D ⊂ R

n.
(i) If f is convex then x∗ is a local minimiser if and only if it is a global min-

imiser.
(ii) If f is C1 on D, then f is convex if and only if for all x, y ∈ D,

f(y) ≥ f(x) +∇f(x) · (y − x), (2.2)

that is, the graph of the first order approximation of f at x lies below the
graph of f .

(iii) If f is convex and ∇f(x∗) = 0 then x∗ is a global minimiser of f . If D = R
n

then this condition is both sufficient and necessary.
(iv) f is both convex and concave if and only if f is an affine function.
Proof. Suppose x∗ ∈ D is a local but not a global minimiser. Then there exists a

y ∈ D such that f(y) < f(x∗), and then f(λy + (1− λ)x∗) ≤ λf(y) + (1− λ)f(x∗) <

7

f(x∗) for all λ ∈ [0, 1) and x∗ cannot be a local minimiser because λ can be chosen
arbitrarily close to 0. On the other hand, every global minimiser is a local minimiser.
This proves (i). Suppose now that f satisfies (2.2). Given λ ∈ [0, 1] and x, y ∈ D, let
z = (1− λ)x + λy. (2.2) implies

f(x) ≥ f(z) +∇f(z) · (x− z) and

f(y) ≥ f(z) +∇f(z) · (y − z).

Multiplying the first inequality by (1 − λ) and the second by λ, and adding the two
inequalities we get f(z) ≤ (1− λ)f(x) + λf(y). Hence, f is convex. Suppose on the
other hand that f is convex. Then f

(

x + λ(y − x)
)

≤ f(x) + λ
(

f(y) − f(x)
)

, and
hence

f
(

x + λ(y − x)
)

− f(x)

λ
≤ f(y)− f(x)

Taking limits as λ → 0 we get (2.2). This proves (ii). (iii) is a trivial consequence
of (i) and (ii). If f is affine, then it is clearly both convex and concave. On the
other hand, if f is both convex and concave, and if f is differentiable at least at
one point x∗ then it follows from (2.2) that f(y) ≥ f(x∗) + ∇f(x∗) · (y − x∗) and
−f(y) ≥ −f(x∗)−∇f(x∗) · (y−x∗) for all y. Hence, f(y) ≡ f(x∗)+∇f(x∗) · (y−x∗).
The general case can be proved in a similar way using the notion of subdifferential.
One can also prove that there are always points where f is differentiable, but this is
technically more difficult.

Theorem 2.5 (Second order differential properties of convex functions).
Let f : D → R be a function defined on a convex open domain D ⊂ R

n.
(i) If f is convex, x ∈ D and the Hessian H(x) = f ′′(x) exists, then H(x) � 0

(positive semidefinite, that is, zTH(x)z ≥ 0 for all z ∈ R).
(ii) If H(x) exists for all x ∈ D and H(x) � 0 then f is convex.
(iii) If H(x) exists for all x ∈ D and H(x) � 0 (positive definite, that is, zTH(x)z >

0 for all z ∈ R \ {0}) then f is strictly convex.
Proof. See homework assignments.

8

