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1. Second Order Conditions. We will now derive second order optimality con-
ditions for the smooth constrained optimisation problem (NLP), and we will therefore
assume that f and the gi (i = 1, . . . , m) are twice continuously differentiable functions.

1.1. Feasible Exit Paths. Our analysis will be based on the notion of feasible
exit directions and exit paths:

Definition 1.1. Let x∗ ∈ R
n be a feasible point and let x ∈ C2

(

(−ε, ε), Rn
)

be a
path such that

x(0) = x∗,

d =
d

dt
x(0) 6= 0,

gi(x(t)) = 0 (i ∈ E , t ∈ (−ε, ε)),

gi(x(t)) ≥ 0 (i ∈ I, t ∈ [0, ε)).

(1.1)

Thus, we can imagine that x(t) is a smooth piece of trajectory of a point particle that
passes through x∗ at time t = 0 with nonzero speed d and moves into the feasible
domain, see Figure 1.1. We call x(t) a feasible exit path from x∗ and the tangent
vector d = d

dt
x(0) a feasible exit direction from x∗.
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Fig. 1.1. A feasible exit path from x∗.

The second order optimality analysis is based on the following observation: if x∗

is a local minimiser of (NLP) and x(t) is a feasible exit path from x∗ then x∗ must
also be a local minimiser for the univariate constrained optimisation problem

min f(x(t))

s.t. t ≥ 0
(1.2)

Before we start looking at such problems more closely, let us characterise the set
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of feasible exit directions from x∗. Note that (1.1) implies

dT∇gi(x
∗) =

d

dt
gi(x(t))|t=0 =

{

d
dt

0 = 0 (i ∈ E),

limt→0+
gi(x(t))−0

t
≥ 0 (i ∈ A(x∗)).

Therefore, the following are necessary conditions for d ∈ R
n to be a feasible exit

direction from x∗:

d 6= 0,

dT∇gi(x
∗) = 0 (i ∈ E),

dT∇gj(x
∗) ≥ 0 (j ∈ A(x∗)).

(1.3)

On the other hand, if the LICQ holds at x∗ then Lemma 2.3 of Lecture 9 shows
that (1.3) implies the existence of a feasible exit path from x∗ such that

d

dt
x(0) = d, (1.4)

gi(x(t)) = tdT∇gi(x
∗) (i ∈ E ∪ A(x∗). (1.5)

Thus, when the LICQ holds then (1.3) is also a sufficient condition for d to be a
feasible exit path from x∗.

1.2. Necessary Second Order Optimality Conditions. Let x∗ be a local
minimiser of (NLP) where the LICQ holds, let x(t) be a feasible exit path from x∗

with exit direction d, and let us consider the restricted problem (1.2).
The first order necessary optimality conditions of Lecture 9 say that there exists

a vector λ∗ of Lagrange multipliers such that (x∗, λ∗) satisfies the KKT conditions

DxL(x∗, λ∗) = 0,

λ∗
j ≥ 0 (j ∈ I),

λ∗
i gi(x

∗) = 0 (i ∈ E ∪ I),

gj(x
∗) ≥ 0 (j ∈ I),

gi(x
∗) = 0 (i ∈ E),

(1.6)

where L(x, λ) = f(x) −
∑

i λigi is the Lagrangian associated with (NLP). Note that

λ∗
i d

T∇gi(x
∗) = 0 (i ∈ E ∪ I \ A(x∗)).

But what about j ∈ A(x∗)? We have to distinguish two different cases.
In the first case there exists an index j ∈ A(x∗) such that dT∇gj(x

∗) > 0. Taylor’s
theorem shows

f(x(t)) = f(x∗) + tdT∇f(x∗) + O(t2)

KKT
= f(x∗) + t

m
∑

i=1

λ∗
i d

T∇gi(x
∗) + O(t2)

≥ f(x∗) + tλ∗
jd

T∇gj(x
∗) + O(t2)

> f(x∗) ∀ 0 < t � 1.

Thus, in this case f strictly increases along the path x(t) for small positive t.
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In the second case we have

λ∗
i d

T∇gi(x
∗) = 0 (i ∈ I ∪ E) (1.7)

and the above argument fails to show that f locally increases along path x(t). We
only know that d/dt f(x(0)) = 0, that is, x∗ is a stationary point of (1.2). But this
might very well be a local maximiser of the restricted problem, see Figure 1.2. Just
like in unconstrained optimisation, second order derivatives yield more information in
this case.
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Fig. 1.2. Mechanistic interpretation of second order conditions: the dotted line shows the graph
of f restricted to a feasible exit path from x∗ (position of the solid ball) satisfying (1.7). The ball
is not at a local minimiser for (1.2). On the other hand, for all feasible exit paths pointing strictly
away from the constraint surface Gj the ball sits at a strict local minimiser of the restricted problem
(1.2).

Theorem 1.2 (Second Order Necessary Conditions). Let x∗ be a local minimiser
of (NLP) where the LICQ holds. Let λ∗ ∈ R

m be a Lagrange multiplier vector such
that (x∗, λ∗) satisfies the KKT conditions. Then we have

dTDxxL(x∗, λ∗)d ≥ 0 (1.8)

for all feasible exit directions d from x∗ that satisfy (1.7).

Proof. Let d 6= 0 satisfy (1.3) and (1.7), and let x ∈ C2
(

(−ε, ε), Rn
)

be a feasible
exit path from x∗ corresponding to d. Then

L
(

x(t), λ∗
) (1.5)

= f(x(t)) −

m
∑

i=1

λ∗
i td

T∇gi(x
∗)

(1.7)
= f(x(t)).

Therefore, Taylor’s theorem implies

f(x(t)) = L(x∗, λ∗) + tDxL(x∗, λ∗)d

+
t2

2

(

dTDxxL(x∗, λ∗)d + DxL(x∗, λ∗)
d2

dt2
x(0)

)

+ O(t3)

KKT
= f(x∗) +

t2

2
dTDxxL(x∗, λ∗)d + O(t3).

If it were the case that dTDxxL(x∗, λ∗)d < 0 then f(x(t)) < f(x∗) for all t sufficiently
small, contradicting the assumption that x∗ is a local minimiser. Therefore, it must
be the case that dTDxxL(x∗, λ∗)d ≥ 0.
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1.3. Sufficient Optimality Conditions. In unconstrained minimisation we
found that strengthening the second order condition D2f(x) � 0 to D2f(x) � 0
led to sufficient optimality conditions. Does the same happen when we change the
inequality in (1.8) to a strict inequality? Our next result shows that this is indeed
the case.

There are two issues that need to be addressed in the proof. The first is that x∗

is a strict local minimiser for the restricted problem (1.2). This is easy to prove using
Taylor expansions. The second, more delicate issue is to show that it suffices to look
at the univariate problems (1.2) for all possible feasible exit paths from x∗.

Theorem 1.3 (Sufficient Optimality Conditions). Let (x∗, λ∗) ∈ R
n × R

m be
such that the KKT conditions (1.6) hold, the LICQ holds, and

dTDxxL(x∗, λ∗)d > 0

for all feasible exit directions d ∈ R
n from x∗ that satisfy (1.7). Then x∗ is a strict

local minimiser.

Proof. Let us assume to the contrary of our claim that x∗ is not a local minimiser.
Then there exists a sequence of feasible points (xk)N such that limk→∞ xk = x∗ and

f(xk) ≤ f(x∗) ∀ k ∈ N. (1.9)

The sequence xk−x∗

‖xk−x∗‖ lies on the unit sphere which is a compact set. The Bolzano–

Weierstrass theorem therefore implies that we can extract a subsequence (xki
)i∈N,

ki < kj (i < j), such that the limiting direction d := limk→∞ dki
exists, where

dki
=

xki
− x∗

‖xki
− x∗‖

.

Since d lies on the unit sphere we have d 6= 0. Replacing the old sequence by the new
one we may assume without loss of generality that ki ≡ i. One can check that d must
satisfy the conditions (1.3) the same way as for feasible exit directions. By Taylor’s
theorem,

f(x∗) ≥ f(xk) = f(x∗) + ‖xk − x∗‖∇f(x∗)Tdk + O(‖xk − x∗‖2).

Therefore,

∇f(x∗)Td = lim
k→∞

∇f(x∗)Tdk ≤ 0. (1.10)

On the other hand, the KKT conditions imply

dT∇f(x∗) =
m

∑

i=1

λ∗
i d

T∇gi(x
∗) ≥ 0. (1.11)

But (1.10) and (1.11) can be jointly true only if (1.7) holds. The assumption of the
theorem therefore implies that

dTDxxL(x∗, λ∗)d > 0. (1.12)
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On the other hand,

f(x∗) ≥ f(xk)

KKT
≥ f(xk) −

m
∑

i=1

λ∗
i gi(xk)

= L(xk , λ∗)

= L(x∗, λ∗) + ‖xk − x∗‖DxL(x∗, λ∗)dT
k +

‖xk − x∗‖2

2
dT

k DxxL(x∗, λ∗)dk

+ O(‖xk − x∗‖3)

KKT
= f(x∗) +

‖xk − x∗‖2

2
dT

k DxxL(x∗, λ∗)dk + O(‖xk − x∗‖3),

or

dT
k DxxL(x∗, λ∗)dk ≤ |O(‖xk − x∗‖)|.

Taking limits, we obtain

dTDxxL(x∗, λ∗)d = lim
k→∞

dT
k DxxL(x∗, λ∗)dk ≤ 0.

Since this contradicts (1.12), our assumption about the existence of the sequence
(xk)N must have been wrong.
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