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1. Examples. In this lecture we will take a closer look at some examples and
illustrate how optimality conditions are applied in the Method of Lagrange multipliers.

Example 1.1. Use the method of Lagrange multipliers to solve the problem

min
x∈R2

‖x‖ (1.1)

s.t.
∥

∥x −
[

0
1

]
∥

∥ ≥ 1,
∥

∥x −
[

0
2

]∥

∥ ≤ 1.

(1.2)
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Fig. 1.1. The feasible domain F is shaded.

Clearly, the problem is equivalent to

min
x∈R2

f(x) = x2
1 + x2

2

s.t. g1(x) = x2
1 + (x2 − 1)2 − 1 ≥ 0,

g2(x) = −x2
1 − (x2 − 2)2 + 1 ≥ 0.

We have

∇f(x) =
[

2x1

2x2

]

,

∇g1(x) =
[ 2x1

2(x2−1)

]

,

∇g2(x) =
[ −2x1

−2(x2−2)

]

,

L(x, λ) = x2
1 + x2

2 − λ1

(

x2
1 + (x2 − 1)2 − 1

)

− λ2

(

−x2
1 − (x2 − 2)2 + 1

)

,

∇xL(x, λ) =

[

2x1(1 − λ1 + λ2)
2x2 − 2λ1(x2 − 1) + 2λ2(x2 − 2)

]

.
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The KKT conditions are the following:

2x1(1 − λ1 + λ2) = 0 (1.3)

2x2 − 2λ1(x2 − 1) + 2λ2(x2 − 2) = 0 (1.4)

x2
1 + (x2 − 1)2 − 1 ≥ 0 (1.5)

−x2
1 − (x2 − 2)2 + 1 ≥ 0 (1.6)

λ1

(

x2
1 + (x2 − 1) − 1

)

= 0 (1.7)

λ2

(

−x2
1 − (x2 − 2)2 + 1

)

= 0 (1.8)

λ1 ≥ 0 (1.9)

λ2 ≥ 0. (1.10)

Let us find all the KKT points. We need to distinguish four cases:
If A(x) = ∅ then (1.3),(1.4) imply x = 0, which violates (1.6). Thus, there are no

KKT points that correspond to A(x) = ∅.
If A = {2} then λ1 = 0. (1.3),(1.4) and (1.6) imply

2x1(1 + λ2) = 0 (1.11)

2x2 + 2λ2(x2 − 2) = 0 (1.12)

x2
1 + (x2 − 2)2 = 1. (1.13)

(1.11) implies that either x1 = 0 or λ2 = −1. The second case contradicts (1.10),
so we may assume that the first case holds. But then (1.13) implies x2 ∈ {1, 3}. If
x2 = 1 then A(x) = {1, 2}, which contradicts our earlier assumption. Thus, we must
have x2 = 3. But then (1.12) implies λ2 = −3 which contradicts (1.10). Thus, there
are no KKT points corresponding to A = {2}.

If A(x) = {1} then λ2 = 0. (1.3)– (1.5) become

2x1(1 − λ1) = 0, (1.14)

2x2 − 2λ1(x2 − 1) = 0, (1.15)

x2
1 + (x2 − 1)2 = 1. (1.16)

The unique solution of these equations is

x̂ =
[

0
2

]

, λ̂ =
[

2
0

]

.

It is easily checked that (x̂, λ̂) satisfies (1.3)–(1.10) and hence is a KKT point. More-
over, the LICQ holds at x̂ because ∇g1(x̂) =

[

0
2

]

6= 0.
If A(x) = {1, 2}, then (1.5) and (1.6) must hold at equality, that is,

x2
1 + (x2 − 1)2 − 1 = 0,

x2
1 + (x2 − 2)2 − 1 = 0.

This system of equations implies x2 = 3/2, x1 = ±
√

3/2. Let us analyse the case

x̆ =
[ 3/2√

3/2

]

only, as the two cases are similar. (1.3),(1.4) imply

√
3(λ2 + 1 − λ1) = 0,

3 − λ1 − λ2 = 0,
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which implies λ̆ =
[

1
2

]

. It is easily checked that (x̆, λ̆) satisfies (1.3)–(1.10) and

hence is a KKT point. Likewise, (x̄, λ̄) is a KKT point where x̄ =
[ 3/2√

3/2

]

and

λ̄ = λ̆. Furthermore, the LICQ holds at both points because ∇g1(x̆) =
[√

3
1

]

and

∇g2(x̆) =
[

−
√

3
1

]

are linearly independent, and likewise for ∇g1(x̄) =
[

−
√

3
1

]

and

∇g2(x̄) =
[√

3
1

]

.
All in all we have found three KKT points. It would be easy to evaluate f at all

three points to find that x̆ and x̄ are global minimisers of (1.1). It can also be seen
by inspection that x̂ is not a local minimiser. Let us now show that this information
can also be derived from second order information:

Since the LICQ holds at x̂, the feasible exit directions from x̂ are characterised
by

d 6= 0,

dT∇g1(x̂) ≥ 0,

which is equivalent to

d2 ≥ 0,

d2
1 + d2

2 > 0.

If d2 > 0 then λ̂1d
T∇g1(x̂) = 4d2 > 0, so we don’t need to check any additional

conditions for such directions d. However, if d2 = 0 then λ̂1d
T∇g1(x̂) = 0, and since

A(x̂) = {1}, this shows that d is a feasible exit direction for which the second order
necessary optimality condition

dTDxxL(x̂, λ̂)d ≥ 0

has to be satisfied. But note that this condition is violated, because

dTDxxL(x̂, λ̂)d = d2
1

∂2

∂x2
1

L(x̂, λ̂) = −2d2
1 < 0.

Since x̂ fails to satisfy the second order necessary optimality conditions, it cannot be
a local minimiser of (1.1).

Now for x̆, where the LICQ holds, the set of feasible exit directions is characterised
by

d 6= 0,

dT∇g1(x̆) ≥ 0,

dT∇g2(x̆) ≥ 0,

which is equivalent to

|d1| ≤
d2√
3
,

d2 > 0.

But for any d that satisfies these conditions we have

λ̆1d
T∇g1(x̆) = 2(

√
3d1 + d2) > 0.
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Thus, the set of feasible exit directions that satisfy Condition (1.7) from Lecture 10 is
the empty set. This shows that the sufficient optimality conditions are satisfied at x̆,
and that this must be a strict local minimiser. Likewise, one finds that the sufficient
optimality conditions hold at x̄.

Example 1.2. Consider the minimisation problem

min − 0.1(x1 − 4)2 + x2
2

s.t. x2
1 + x2

2 − 1 ≥ 0.

(i) Does this problem have a global minimiser?
(ii) Set up the KKT conditions for this problem.
(iii) Find x∗ and a vector λ∗ of Lagrange multipliers so that (x∗, λ∗) satisfy the

KKT conditions.
(iv) Is the LICQ satisfied at x∗?
(v) Characterise the set of feasible exit directions from x∗.
(vi) Check that the sufficient optimality conditions hold at x∗ to show that x∗ is

a local minimiser.

(i) The objective function is unbounded along the line x2 = 0, x1 → ∞. Thus, no
global solution exists, but we can find a local minimum with the method of Lagrange
multipliers.

(ii) We get

∇xL(x, λ) =
(

−0.2(x1−4)−2λx1

2x2−2λx2

)

, ∇xxL(x, λ) =
(

−0.2−2λ 0
0 2−2λ

)

.

The KKT conditions are

−0.2(x1 − 4) − 2λx1 = 0,

2x2 − 2λx2 = 0,

x2
1 + x2

2 − 1 ≥ 0,

λ(x2
1 + x2

2 − 1) = 0,

λ ≥ 0.

(iii) For A(x) = ∅ have λ = 0 and hence, x1 = 4, x2 = 0, which implies A = {1},
contrary to our assumption. Thus, there are no KKT points corresponding to this
case. If A = {1} then the unique solution is x∗ =

[

1
0

]

, λ∗
1 = 0.3.

(iv) The LICQ holds at x∗ because ∇g1(x
∗) =

[

2
0

]

6= 0.
(v) The set of feasible exit directions from x∗ for which Condition (1.7) from

Lecture 10 holds is

{d ∈ R
2 : d1 = 0, d2 6= 0}.

(vi) For any d from that set we have

dT∇xxL(x∗, λ∗)d = ( 0 d2 )
(

−0.4 0
0 1.4

) (

0
d2

)

= 1.4d2
2 > 0.
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Therefore, the sufficient optimality conditions are satisfied and x∗ is a strict local
minimiser.

Example 1.3. Consider the half space defined by H = {x ∈ R
n : aTx + b ≥ 0}

where a ∈ R
n and b ∈ R are given. Formulate and solve the optimisation problem of

finding the point x in H that has the smallest Euclidean norm.

The problem is of course trivial to solve directly, but we want to see how the
Lagrange multiplier approach solves the problem “blindly”. The problem is equivalent
to solving

min xTx

s.t. g(x) = aTx + b ≥ 0.

We may assume that a 6= 0; otherwise the problem is trivial. The Lagrangian of this
problem is

L(x, λ) = xTx − λ(aTx + b).

The gradient ∇g(x) = a is nonzero everywhere, and hence the LICQ holds at all
feasible points. The KKT conditions are

x − λa = 0, (1.17)

λ(aTx + b) = 0, (1.18)

aTx + b ≥ 0, (1.19)

λ ≥ 0. (1.20)

If λ = 0 then x = 0, and then (1.19) implies b ≥ 0. Either this is true, and then
(x, λ) = (0, 0) satisfies the KKT conditions, or else b < 0 and then λ = 0 is not a
viable choice.

If λ > 0, then x = λa 6= 0, aTx+b = λ‖a‖2+b = 0, and then b < 0, which is either
true, in which case (x, λ) =

(

(−b/‖a‖2)a,−b/‖a‖2
)

satisfies the KKT conditions, or
else λ > 0 is not a viable choice.

Thus, we have found that both in the case b ≥ 0 and b < 0 there is exactly
one point satisfying the KKT conditions, and since the KKT conditions must hold
at the minimum of our optimisation problem, the resulting points must be local min-
imisers. Since the problem is convex these are also the global minimisers in both cases.

Our last example illustrates that even in the case with only equality constraints
the method of Lagrange multipliers is the right tool to solve constrained optimisation
problems: eliminating some of the variables can lead to the wrong result.

Example 1.4. Solve the problem

min
x∈R2

x1 + x2

s.t. x2
1 + x2

2 = 1

by eliminating the variable x2. Show that the choice of sign for a square root opera-
tion during the elimination process is critical; the wrong choice leads to an incorrect
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answer.

A sketch reveals that (−1/
√

2,−1/
√

2) is the unique local minimiser. Let us
eliminate x2 = −

√

1 − x2
1 and rename x1 as x. The problem becomes minx∈R f(x) =

x −
√

1 − x2. Then f ′(x) = 1 − x/
√

1 − x2, and f ′(x) = 0 for x =
√

1 − x2, which
is satisfied for x = 1/

√
2, leading to the solution (x1, x2) = (1/

√
2,−1/

√
2), which is

neither a maximum nor a minimum. The elimination x2 =
√

1 − x2
1 however leads to

the solutions (x1, x2) = (−1/
√

2,−1/
√

2) and (x1, x2) = (1/
√

2, 1/
√

2), both of which
are true stationary points, one of them a minimiser, the other a maximiser.
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