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1. Reformulating the KKT Conditions. The topic of this lecture is La-
grangian duality, a generalisation of the LP duality theory we studied in the exercises
relating to Lecture 8. As a by-product of this analysis we also find that constrained
convex optimisation problems allow first order necessary and sufficient conditions.
This generalises our results for unconstrained convex optimisation from Lecture 1.

In all that follows we consider the constrained optimisation problem

(NLP) min f(x)

s.t. gI(x) ≥ 0,

gE(x) = 0,

where gI is a vector of inequality constraints and gE a vector of equality constraints.
The associated KKT conditions are

∇f(x∗) − g′I(x∗)Tu∗ − g′E(x∗)Tv = 0, (1.1)

gI(x∗) ≥ 0, (1.2)

gE(x∗) = 0, (1.3)

u∗
jgj(x

∗) = 0 (j ∈ I), (1.4)

u∗ ≥ 0. (1.5)

To motivate Lagrangian duality, we will reformulate the KKT conditions (1.1)–
(1.5) in slightly more abstract form. To do this, we want to extend the Lagrangian
as follows:

L : Rn × Rp × Rq → R

(x, u, v) 7→











f(x) − uTgI(x) − vTgE(x), if x ∈ dom(f), u ≥ 0,

+∞ if x /∈ dom(f), u ≥ 0,

−∞ if u � 0.

This definition of the Lagrangian is a bit more general than the one we encountered
previously, but this is mainly interesting for the purposes of simplifying notation and
does not really entail a conceptual change:

(i) We account for the possibility that f might not be defined on all of Rn. Our
extensions of L is compatible with extending f by setting f(x) = +∞ for all
x /∈ dom f . Since (NLP) is a minimisation problem, this automatically forces
the search for optimal solutions to be restricted to dom f .

(ii) We define L to be −∞ when the vector of Lagrange multipliers associated
with the inequality constraints is not nonnegative as it should be. Again, this
convention allows us not to worry notationally about the fact that, really, u
is constrained to the nonnegative orthant.
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Lemma 1.1. The KKT conditions (1.1)–(1.5) are equivalent to the following set
of equations and inequalities,

∇xL(x∗, u∗, v∗) = 0, (1.6)

∇uL(x∗, u∗, v∗) ≤ 0, (1.7)

∇vL(x∗, u∗, v∗) = 0, (1.8)

u∗T∇uL(x∗, u∗, v∗) = 0, (1.9)

u∗ ≥ 0, (1.10)

where ∇xL = (DxL)T is the gradient with respect to x, and likewise ∇uL and ∇vL
the gradients with respect to u and v.

Proof. (1.6) is just a reformulation of (1.1). Note that ∇uL = −gI and ∇vL =
−gE . Therefore, (1.2) is equivalent to ∇uL(x∗, u∗, v∗) = −gI(x∗) ≤ 0, which is (1.7).
Likewise, (1.3) is equivalent to ∇vL(x∗, u∗, v∗) = −gE(x∗) = 0, which is (1.8). Fi-
nally, (1.4) and ∇uL = −gI imply u∗T∇uL(x∗, u∗, v∗) = −

∑

i∈I
u∗

i gi(x
∗) = 0, which

is (1.9). On the other hand, (1.7),(1.10) and (1.9) imply that
∑

i∈I
u∗

i gi(x
∗) is a sum

of nonnegative summands that adds to zero, and hence all the summands must be
zero, which shows (1.4).

Our reformulation of the KKT conditions in terms of the Lagrangian provides the
following deeper interpretation:

Lemma 1.2 (KKT and Saddle Points).

(i) Equation (1.6) is the first order necessary condition for x∗ to be a minimiser
of the unconstrained problem

min
x∈Rn

L(x, u∗, v∗), (1.11)

where u∗ and v∗ are regarded as a set of fixed parameters.

(ii) Equations (1.7)–(1.10) are the first order necessary optimality conditions for
the problem

max
(u,v)∈Rp×Rq

L(x∗, u, v) (1.12)

where x∗ is considered as a set of fixed parameters, and where p = |E| and
q = |I|.

Proof. (i) (1.11) is an unconstrained problem. Therefore, (i) is immediate.
(ii) The objective function of problem (1.12) takes the value −∞ for u � 0

and finite values when u ≥ 0. Therefore, (1.12) is equivalent to the constrained
optimisation problem

min
(u,v)∈Rp×Rq

−L(x∗, u, v)

s.t. u ≥ 0.
(1.13)

The LICQ holds at all feasible points because the constraint gradients are the co-
ordinate unit vectors {e1, . . . , ep} corresponding to the variables of u, and these are
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linearly independent. Therefore, the KKT conditions corresponding to (1.13) are nec-
essary first order optimality conditions: the requirement is for there to exists a vector
of Lagrange multipliers λ∗ ∈ Rp such that

[

−∇uL(x∗, u∗, v∗)
−∇vL(x∗, u∗, v∗)

]

−

p
∑

j=1

λ∗
jej = 0, (1.14)

u∗ ≥ 0, (feasibility) (1.15)

λ∗
i u

∗
i = 0 (i = 1, . . . , p), (1.16)

λ∗ ≥ 0. (1.17)

Moreover, Equation (1.14) is clearly the same as

−∇uL(x∗, u∗, v∗) − λ∗ = 0, (1.18)

−∇vL(x∗, u∗, v∗) = 0, (1.19)

Let us show that the system (1.15)–(1.19) is equivalent to (1.7)–(1.10):

- (1.18) implies −∇uL(x∗, u∗, v∗)−λ∗ = 0 and together with (1.17) this implies
∇uL(x∗, u∗, v∗) ≤ 0, which is (1.7),

- (1.18) and (1.16) imply −u∗T∇uL(x∗, u∗, v∗) = 0, which implies (1.7),
- (1.19) is of course the same as (1.8), and (1.15) is the same as (1.10).

Thus, (1.15)–(1.19) imply (1.7)–(1.10). On the other hand:

- if (1.7)–(1.10) hold true then (1.19) and (1.15) hold true,
- if we set λ∗ = −∇uL(x∗, u∗, v∗) then (1.18) is automatically true and (1.8)

implies (1.17),
- (1.9) and our choice of λ∗ imply that λ∗Tu∗ = 0. Together with (1.10) and

the already proven (1.17) this implies (1.16).

2. Lagrangian Duality. Our view of the KKT conditions in the light of Lemma
1.2 suggests a closer look at the saddle-point finding problems associated with L:

(P) min
x

(

max
(u,v)

L(x, u, v)
)

,

(D) max
(u,v)

(

min
x

L(x, u, v)
)

.

In other words, (P) is a minimisation problem with objective function

x 7→ max
(u,v)

L(x, u, v),

and likewise, (D) is a maximisation problem with objective function

(u, v) 7→ min
x

L(x, u, v).

(P) is called the Lagrangian primal problem associated with (NLP) and (D) the La-
grangian dual.
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The natural question to ask is: what is the relation between (NLP), (P) and (D)?
The following Theorem shows that (P) and (NLP) are equivalent, and later we will
see that for convex problems (P) and (D) are equivalent under regularity assumptions,
that is, the max and min may be interchanged.

Theorem 2.1 (Lagrangian Primal). (P) and (NLP) are equivalent problems.

Proof. If x is feasible (for (NLP)) then we have gI(x) ≥ 0 and gE(x) = 0. This
implies

L(x, u, v) =

{

f(x) − uTgI(x) − vTgE(x) = f(x) − uTgI(x) ≤ f(x), if u ≥ 0,

−∞ if u � 0.

Therefore, for feasible x the objective function of (P) takes the value

max
(u,v)

L(x, u, v) = L(x, 0, v) = f(x).

On the other hand, if x is infeasible (for (NLP)) then

- either there exists an index j ∈ I such that gj(x) < 0, and then we can choose
ui = M > 0,

- or there exists an index i ∈ E such that gi(x) 6= 0, and then we can choose
vj = − sgn(hi(x))M .

In both cases, we can set all remaining entries of u and v to zero, and then

L(x, u, v)
M→∞
−→ +∞.

This shows that for infeasible x the objective function of (P) is

max
(u,v)

L(x, u, v) = +∞.

In summary, we find that

max
(u,v)

L(x, u, v) =

{

f(x) if gI(x) ≥ 0, gE(x) = 0,

+∞ otherwise,

which shows that minimising x 7→ max(u,v) L(x, u, v) over Rn is the same as minimis-
ing f(x) over the feasible domain of (NLP).

2.1. The Interpretation of the Dual. The interpretation of the Lagrangian
dual (D) is less straight forward. The following example shows that in the case where
(P) is a linear programming problem, (D) is the usual LP dual. The example also
shows that convex quadratic programming problems have a convex quadratic dual.
And finally, the example highlights that if (P) is not a convex problem then (D) might
not yield any useful information at all.

4



Example 2.2. Consider the problem

min
x∈Rn

1

2
xTBx + cTx, (2.1)

s.t. Ax = b,

x ≥ 0,

where B is a symmetric n × n matrix, c ∈ Rn, A is a q × n matrix and b ∈ Rq.

Problems of the form (2.1) are called quadratic programming (QP). We have
gI(x) = x, p = n and gE(x) = Ax − b. The Lagrangian of this problem is

L(x, u, v) =

{

1
2xTBx + (c − u − ATv)Tx + bTv if u ≥ 0,

−∞ otherwise.

Note that

max
(u,v)

L(x, u, v) =

{

f(x) if Ax = b, x ≥ 0,

+∞ otherwise.

Therefore, (P) is clearly equivalent to (2.1), as predicted by Theorem 2.1.
Let us now derive the dual of (2.1). We distinguish three cases.

Case 1: Let B = 0. Then (2.1) is an LP problem in standard primal form,

(P) min cTx

s.t. Ax = b,

x ≥ 0.

In this case we have

min
x

L(x, u, v) =











bTv if c − u − ATv = 0, u ≥ 0,

−∞ if c − u − ATv 6= 0, u ≥ 0,

−∞ if u � 0.

or in other words,

min
x

L(x, u, v) =

{

bTv if ATv ≤ c, u = c − ATv,

−∞ otherwise.

Therefore, the dual Lagrangian problem is

(D) max bTv

s.t. ATv ≤ c.

Note that this is the usual LP dual of (P).

Case 2: Let B � 0. If u ≥ 0 then x 7→ L(x, u, v) is a smooth convex function.
The unconstrained minimisers of convex functions are exactly their stationary points
characterised by ∇xL(x, u, v) = 0 or

Bx = ATv + u − c, (2.2)

5

so that

L(x, u, v) = bTv −
1

2
xTBx

for all such x. On the other hand, if u � 0 then minx L(x, u, v) = −∞. Therefore,
the dual problem is

max
(x,u,v)

bTv −
1

2
xTBx,

s.t. ATv − Bx + u = c,

u ≥ 0.

Moreover, if B is positive definite, then (2.2) is nonsingular, and the dual problem
can be written as

(D) max
(u,v)

bTv −
1

2

(

ATv + u − c
)T

B−1
(

ATv + u − c
)

,

s.t. u ≥ 0.

Case 3: If B has both positive and negative eigenvalues, then minx L(x, u, v) =
−∞ for all (u, v) and the dual problem becomes

(D) max
(u,v)

−∞.

Showing this identity is left as an exercise. In this case (D) yields no useful informa-
tion.

2.2. Weak Duality. Example 2.2 shows that Lagrangian duality is a generalisa-
tion of LP duality. In the LP context there was a close connection between optimality
conditions and duality. This connection can also be generalised, as we are about to see.

Theorem 2.3 (Weak Lagrangian Duality). For all (x∗, u∗, v∗) ∈ Rn × Rp × Rq

it is the case that

max
(u,v)

L(x∗, u, v) ≥ min
x

L(x, u∗, v∗), (2.3)

that is, the objective function value of (P) at the primal feasible point x∗ yields an
upper bound on the dual optimal value, and the objective function value of (D) at the
dual feasible point (u∗, v∗) yields a lower bound on the optimal primal value.

Proof. This is trivial, because

min
x

L(x, u∗, v∗) ≤ L(x∗, u∗, v∗) ≤ max
(u,v)

L(x∗, u, v).
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3. Convex Programming. Weak Lagrangian duality is as far as the LP duality
theory extends to nonconvex problems. To extend the theory further, we need to
assume that (NLP) is convex, that is, f is convex while gj (j ∈ I) and gi,−gi (i ∈ E)
are concave, so that the feasible domain F is convex. We have seen in Lecture 1 that
the requirement that both gi and −gi are concave implies that gi is a linear functional
plus a constant, (an affine function). Thus, only linear equality constraints appear in
convex programming problems!

A convex programming problem is thus of the form

(CP) min
x

f(x)

s.t. Ax = b,

x ∈ K =
{

z ∈ Rn : gj(z) ≥ 0, (j ∈ I)
}

,

where A ∈ Rm×n is a matrix which can always be chosen so that its row vectors ∇gT
i

(i ∈ E) are linearly independent (otherwise we can eliminate a few of them or detect
infeasibility), and where K is a convex set.

The Lagrangian of a convex optimisation problem has nice convexity properties
itself:

(i) For a fixed (u∗, v∗) ∈ Rp
+ × Rq the function

x 7→ L(x, u∗, v∗) = f(x) +
∑

j∈I

u∗
j (−gj(x)) +

∑

i∈E

v∗i (−gi(x))

is a sum the convex functions f , −u∗
jgj (j ∈ I) and −v∗

i gi (i ∈ E). Therefore,
by the results of Lecture 1, x 7→ L(x, u∗, v∗) is globally convex!

(ii) For a fixed x∗ ∈ Rn the function

(u, v) 7→ L(x∗, u, v)

is affine (linear plus a constant) on Rp
+ ×Rq. Furthermore, it takes the value

−∞ when u � 0, and this is consistent with our definition of concavity for so-
called proper functions as introduced in Lecture 1. Thus, (u, v) 7→ L(x∗, u, v)
is globally concave!

3.1. Exact Characterisation of Convex Optimality. It now turns out that
– just as in unconstrained optimisation – first order optimality conditions are all we
need when (NLP) is a convex problem:

Theorem 3.1 (Sufficient Optimality Conditions for Convex Programming). Let
(NLP) be a convex problem in which the objective and constraint functions are at least
once continuously differentiable. Let (x∗, u∗, v∗) be a point that satisfies the KKT con-
ditions (1.6)–(1.10). Then x∗ is a global minimiser of (NLP).

Proof. The condition ∇xL(x∗, u∗, v∗) = 0 implies that x∗ is a global minimiser of
the convex unconstrained function x 7→ L(x, u∗, v∗). For all x feasible (for (NLP)),
we have gI(x) ≥ 0 and gE(x) = 0. Since u∗ ≥ 0 we therefore have

f(x) ≥ f(x) − u∗TgI(x) − v∗TgE(x)

= L(x, u∗, v∗)

≥ L(x∗, u∗, v∗)

= f(x∗),
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the last equality derives from the complementarity condition (1.9).

What about constraint qualifications? Where have they disappeared to? It is
important to realise that Theorem 3.1 only says that the KKT conditions are suf-
ficient optimality conditions for convex programming, but not necessary conditions.
Of course, the KKT conditions also become necessary when the LICQ or the more
general MFCQ is satisfied. For convex problems it is convenient to reformulate the
MFCQ by an equivalent criterion that is easier to check:

Definition 3.2 (Slater Constraint Qualification). The convex programming
problem (CP) satisfies the Slater constraint qualification (SCQ) if A has full row-
rank and K◦ ∩ F is nonempty, in other words, there exists a point x ∈ Rn such that
gE(x) = 0 and gI(x) > 0.

Corollary 3.3 (Exact Characterisation of Optimality for Convex Program-
ming). If (CP) satisfies the SCQ then the KKT conditions are an exact characteri-
sation of optimality.

Proof. This follows immediately from Theorem 3.1 and the necessary first order
optimality conditions for nonlinear programming.

3.2. Strong Duality for Convex Programming. In the exercises we saw that
strong LP duality was a direct consequence of necessary and sufficient optimality con-
ditions. Now that we have a generalisation of this result, strong duality extends also:

Theorem 3.4 (Strong Lagrangian Duality). Let (CP) be a convex programming
problem for which the SCQ holds and such that an optimal solution x∗ exists. Then
(D) has an optimal solution (u∗, v∗) and the primal and dual objective function values
at x∗ and (u∗, v∗) coincide.

Proof. Because of the SCQ, there exists a vector (u∗, v∗) ∈ Rp
+ × Rq such that

(x∗, u∗, v∗) satisfies the KKT conditions. Since x∗ is feasible, we have

L(x∗, u, v) = f(x∗) − uTgI(x) − vTgI(x)

= f(x∗) − uTgI(x)

≤ f(x∗)

= L(x∗, u∗, v∗)

for all (u, v) ∈ Rp
+ × Rq , where the last equality follows from the complementarity

requirement (1.9) in the KKT conditions. Since L(x∗, u, v) = −∞ for u � 0, this
shows that

L(x∗, u∗, v∗) = max
(u,v)

L(x∗, u, v).

On the other hand, (1.6) and the convexity of x 7→ L(x, u∗, v∗) imply that

L(x∗, u∗, v∗) = min
x

L(x, u∗, v∗).

The result now follows from weak duality.
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