
SECTION C: CONTINUOUS OPTIMISATION

LECTURE 13: THE PENALTY FUNCTION METHOD

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2005, DR RAPHAEL HAUSER

1. Basic Concepts in Constrained Optimisation. In the remaining four lec-
tures we will study algorithms for solving constrained nonlinear optimisation problems
of the standard form

(NLP) min
x∈Rn

f(x)

s.t. gE(x) = 0,

gI(x) ≥ 0.

Two central ideas underly all of the algorithms we will consider:

1.1. Merit Functions. Starting from a current iterate x, we aim at finding a
new update x+ that brings us closer towards the achievement of two conflicting goals:
reducing the objective function as much as possible, and satisfying the constraints.
The two goals can be combined by minimising a merit function which depends both
on the the objective function and on the residuals measuring the constraint violation,

rE(x) := gE(x)

rI(x) := (−gI(x))+,

where

(−gj(x))+ :=

{

−gj(x) if − gj(x) > 0,

0 if − gj(x) ≤ 0

is the “positive part” of −gj (j ∈ I).

Example 1.1. The penalty function method that will be further analysed below
is based on the merit function

Q(x, µ) = f(x) +
1

2µ

∑

i∈E∪I

g̃2
i (x), (1.1)

where µ > 0 is a parameter and

g̃i =

{

gi (i ∈ E),

min(gi, 0) (i ∈ I).

Note that Q(x, µ) has continuous first but not second derivatives at points where
one or several of the inequality constraints are active.

1.2. Homotopy Idea. The second term of the merit function forces the con-
straint violation to be small when Q(x, µ) is minimised over x. We are not guaranteed
that the constraints are exactly satisfied when µ is held fixed, but we can penalise
constraint violation more strongly by choosing a smaller µ.

This leads to the idea of a homotopy or continuation method which is based on
reducing µ dynamically and using the following idea for the outermost iterative loop:

1

Given a current iterate x and a value of the homotopy parameter
µ such that x is an approximate minimiser of the unconstrained
problem

min
y∈Rn

Q(y, µ), (1.2)

reduce µ to a value µ+ < µ and – starting from x – apply one or
several steps of an iterative algorithm for the minimisation of

min
y∈Rn

Q(y, µ+),

until an approximate minimiser x+ of this problem is reached.

Thus, the continuation approach replaces the constrained problem (NLP) by a
sequence of unconstrained problems (1.2) for which we already studied solution meth-
ods.

2. The Penalty Function Method. We have already introduced the main
ideas of the quadratic penalty function method and can now define the algorithm
more formally:

Algorithm 2.1 (QPen).

S0 Initialisation
choose x0 ∈ R

n % (not necessarily feasible)
choose (µk)N0

↘ 0 % (homotopy parameters)
choose (εk)N0

↘ 0 % (tolerance parameters)

S1 For k = 0, 1, 2, . . . repeat
y[0] := xk, l := 0
until ‖∇xQ(y[l], µk)‖ ≤ εk repeat

find y[l+1] such that Q(y[l+1], µk) < Q(y[l], µk)
% (using unconstrained minimisation method)

l← l + 1
end
xk+1 := y[l]

end

The choice of the sequences (µ)N0
and (ε)N0

affects the convergence speed of the
method in a crucial way. We will now show that if (xk)N0

converges then the limit
point is usually a KKT points and hence a sensible candidate for a local minimiser of
(NLP):

Theorem 2.2. Let f and gi be C1 functions for all i ∈ E ∪ I, let x∗ be an
accumulation point of the sequence of iterates (xk)N0

generated by Algorithm QPen,
and let (kl)N0

⊆ (k)N0
be such that liml→∞ xkl

= x∗. Let us furthermore assume
that that the set of gradients {∇gi(x

∗) : i ∈ V(x∗)} is linearly independent, where
V(x∗) = E ∪ {j ∈ I : gj(x

∗) ≤ 0} is the index set of active, violated and equality
constraints. For i ∈ E ∪ I let

λ
[k]
i = −

g̃i(xk+1)

µk

. (2.1)

2



Then
i) x∗ is feasible,
ii) the LICQ holds at x∗,
iii) the limit λ∗ := liml→∞ λ[kl] exists,
iv) (x∗, λ∗) is a KKT point.

Proof. The proof we are about to give only depends on the termination criterion
in step S1 and not on the starting point y[0] in each iteration. We may therefore
assume without loss of generality that kl = l for all l ∈ N0.

i) Using ‖∇xQ(xk+1, µk)‖ ≤ εk and the identity

∇xQ(xk+1, µk) = ∇f(xk+1) +
1

µk

∑

i∈E∪I

g̃i(xk+1)∇gi(xk+1) (2.2)

in conjunction with the triangular inequality we get

∥

∥

∥

∑

i∈E∪I

g̃i(xk+1)∇gi(xk+1)
∥

∥

∥
≤ µk

(

εk + ‖∇f(xk+1)‖
)

. (2.3)

Taking limits on the right-hand side, we find

lim
k→∞

µk

(

εk + ‖∇f(xk+1)‖
)

= 0(0 + ‖∇f(x∗)‖) = 0.

Therefore, the left-hand side of (2.3) converges to zero, and

∑

i∈V(x∗)

gi(x
∗)∇gi(x

∗) =
∑

i∈E∪I

g̃i(x
∗)∇gi(x

∗) = 0.

But since {∇gi(x
∗) : i ∈ V(x∗)} is linearly independent, it must be true that

gi(x
∗) = 0, (i ∈ V(x∗)),

which shows that x∗ is feasible.

ii) Since x∗ is feasible, we have V(x∗) = E ∪ A(x∗). The linear independence of
{∇gi(x

∗) : i ∈ V(x∗)} therefore implies that the LICQ holds at x∗.

iii) Since εk → 0 and ‖∇xQ(xk+1, µk)‖ ≤ εk, we have limk→∞∇xQ(xk+1, µk) = 0.
Moreover, f is continuous so that limk→∞∇f(xk+1) = ∇f(x∗). Therefore, it follows
from (2.2) that

lim
k→∞

(

∑

i∈E∪I

−
g̃i(xk+1)

µk

∇gi(xk+1)

)

= ∇f(x∗). (2.4)

Note that if j ∈ I and gj(x
∗) > 0 then gj(xk+1) > 0 and hence, g̃j(xk+1) = 0 for all

k sufficiently large. In this case we therefore have

λ∗
j := lim

k→∞
λ

[k]
j = − lim

k→∞

g̃i(xk+1)

µk

= lim
k→∞

0 = 0. (2.5)

3

On the other hand, since the LICQ holds at x∗, we have limk→∞∇gi(xk) = ∇gi(x
∗) 6=

0 for all (i ∈ E ∪ A(x∗)), and hence,

ϕk
i → ϕ∗

i , (i ∈ E ∪ A(x∗)),

where ϕk
i , ϕ∗

i : R
n → R are the unique linear functionals such that

ϕk
i (gj(xk)), ϕ∗

i (gj(x
∗)) = δij :=

{

1 if i = j,

0 if i 6= j.

Thus, for all ε > 0 there exists kε ∈ N such that

‖ϕk
i (w) − ϕ∗

i (w)‖ < ε ∀ k ≥ kε, ‖w‖ ≤ 2‖∇f(x∗)‖, i ∈ E ∪ A(x∗).

Furthermore, we may choose ε smaller than ‖ϕ∗
i ‖ × ‖∇f(x∗)‖ for all i ∈ E ∪ A(x∗),

and by (2.4) we may choose kε large enough so that

∥

∥

∥
∇f(x∗) +

∑

j∈E∪I

g̃j(xk+1)

µk

∇gj(xk+1)
∥

∥

∥
<

ε

‖ϕ∗
i ‖

.

Therefore, for all k ≥ kε,

∥

∥

∥

∑

j∈E∪I

−
g̃j(xk+1)

µk

∇gj(xk+1)
∥

∥

∥
≤

ε

‖ϕ∗
i ‖

+ ‖∇f(x∗)‖ ≤ 2‖∇f(x∗)‖,

and hence,

∥

∥

∥
ϕk+1

i

(

∑

j∈E∪I

−
g̃j(xk+1)

µk

∇gj(xk+1)
)

− ϕ∗
i (∇f(x∗))

∥

∥

∥

≤
∥

∥

∥
ϕk+1

i

(

∑

j∈E∪I

−
g̃j(xk+1)

µk

∇gj(xk+1)
)

− ϕ∗
i

(

∑

j∈E∪I

−
g̃j(xk+1)

µk

∇gj(xk+1)
)∥

∥

∥

+
∥

∥

∥
ϕ∗

i

(

∑

j∈E∪I

−
g̃j(xk+1)

µk

∇gj(xk+1)
)

− ϕ∗
i (∇f(x∗))

∥

∥

∥

≤ ε + ‖ϕ∗
i ‖ ×

ε

‖ϕ∗
i ‖

< 2ε.

This shows that

lim
k→∞

λ
[k]
i = − lim

k→∞

g̃i(xk+1)

µk

= lim
k→∞

ϕk+1
i

(

∑

j∈E∪I

−
g̃j(xk+1)

µk

∇gj(xk+1)
)

= ϕ∗
i (∇f(x∗)) =: λ∗

i

exists for all (i ∈ E ∪ A(x∗)) and

∇f(x∗)−
∑

i∈E∪I

λ∗
i∇gi(x

∗) = 0. (2.6)

4



iv) (2.6) is the first of the KKT equations. Moreover, we have already established
that x∗ is feasible and that λ∗

j = 0 for j ∈ I \ A(x∗), showing complementarity. It
only remains to check that λ∗

j ≥ 0 for (j ∈ A(x∗)). If gj(xk+1) ≤ 0 occurs infinitely
often, then clearly λj ≥ 0. On the other hand, if j ∈ A(x∗) and gj(xk+1) > 0 for all k

sufficiently large, then g̃j(xk+1) = 0 and λ
[k]
j = 0 for all k large, and this implies that

λ∗
i = 0.

2.1. A Few Computational Issues. It follows from the fact that the approx-

imate Lagrange multipliers λ
[k]
i converge that

g̃i(xk+1) = O(µk)

for all (i ∈ V(x∗)). This shows that µk has to be reduced to the order of precision by
which we want the final result to satisfy the constraints. The Augmented Lagrangian
Method which we will discuss in Lecture 14 performs much better.

The Hessian of the merit function can easily be computed as

D2
xxQ(x, µ) =D2f(x) +

∑

i∈E∪I

g̃i(x)

µ
D2gi(x) +

1

µ

∑

i∈V(x)

∇gi(x)∇gT
i (x)

= C(x) +
1

µ

(

AT(x)A(x)
)

,

where AT(x) is the matrix with columns {∇gi(x) : i ∈ V(x)}. Although D2
xxQ(x, µ)

is discontinuous on the boundary of the feasible domain, it can be argued that this is
usually inconsequential in algorithms.

When D2
xxQ(x, µ) is used for the minimisation of Q(y, µk) in the innermost loop

of Algorithm QPen, the computations can become very ill-conditioned. For example,
solving the Newton equations

D2
xxQ(y[l], µk)dl = −∇xQ(y[l], µk) (2.7)

directly can lead to large errors as the condition number of the matrix

C(y[l]) +
1

µk

(

AT(y[l])A(y[l])
)

is of order O(µ−1
k ). In this particular example, it is better to introduce a new dummy

variable ξl, and to reformulate (2.7) as follows,

(

C(y[l]) AT(y[l])
A(y[l]) −µkI

)(

dl

ξl

)

=

(

−∇xQ(y[l], µk)
0

)

. (2.8)

Indeed, if (dl, ξl)
T satisfies (2.8) then dl solves (2.7): µ−1

k Adl = ξl and −∇xQ =
Cdl + ATξl = Cdl + µ−1

k ATAdl. The advantage of this method is that the system
(2.8) is usually well-conditioned and the numerical results of high precision. Similar
tricks can be applied when a quasi-Newton method is used instead of the Newton-
Raphson method.

5


