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1. The Augmented Lagrangian Method. In Lecture 13 we saw that the
quadratic penalty method has the disadvantage that the penalty parameter µ has to
be reduced to very small values before xk becomes feasible to high accuracy. Moreover,
we pointed out that reducing µ to very small values can lead to numerical instabilities
if the method is not implemented very carefully.

We will now see a related method that does not require µk to converge to zero,
and yet in a neighbourhood of a KKT point x∗ of the nonlinear optimisation problem

(NLP) min
x∈Rn

f(x)

s.t. gE(x) = 0

gI(x) ≥ 0,

the iterates xk still converge to x∗ if the LICQ and the second order sufficient opti-
mality conditions hold at this point. In fact, µ can even be held constant after a while
and the convergence of xk continues!

1.1. Motivation. The method is motivated by the observation that if we knew
the Lagrange multipliers λ∗ such that (x∗, λ∗) is a KKT point for (NLP), then we
could find x∗ by solving the unconstrained problem

min
x∈Rn

L(x, λ∗). (1.1)

Indeed, as already remarked in Lemma 1.2 i) of Lecture 12, the first set of KKT
conditions ∇xL(x∗, λ∗) = 0 amount to the first order necessary optimality conditions
for (1.1).

Of course, λ∗ is not known, but we know from Lecture 13 that one can obtain
estimates λ[k] which can be used to set up the problem

min
x∈Rn

L(x, λ[k]).

as an approximation of (1.1).
If the estimates λ[k] can be iteratively improved and made to converge to λ∗, then

this can form the basis of an algorithmic framework for solving (NLP).

1.2. The Merit Function. The merit function used by this algorithm is the
augmented Lagrangian of (NLP), defined as follows,

LA(x, λ, µ) = L(x, λ) +
1

2µ

∑

i∈I∪E

g̃2
i (x)

= f(x) −
∑

i∈I∪E

λigi(x) +
∑

i∈I∪E

g̃i(x)

2µ
gi(x)

= f(x) +
∑

i∈I∪E

( g̃i(x)

2µ
− λi

)

gi(x),
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where g̃i is defined as in Lecture 13,

g̃i(x) =

{

gi(x) (i ∈ E)

min(gi(x), 0) (i ∈ I).

LA is thus nothing else but the Lagrangian “augmented” by the quadratic penalty
term introduced in Lecture 13, ensuring that x becomes gradually more feasible as
the homotopy parameter µ is reduced.

1.3. The Algorithm.

Algorithm 1.1 (AL).
S0 Initialisation: choose the following,

x0 ∈ R
n (starting point, not necessarily feasible)

λ[0] ∈ R
|E∪I| (initial ”guestimate” of Lagrange multiplier vector)

µ0 > 0 (initial value of homotopy parameter)
(τk)N0

↘ 0 (error tolerance)
S1 For k = 0, 1, 2, . . . repeat

y[0] := xk, l := 0
until ‖∇xLA(y[l], λ[k], µk)‖ ≤ τk repeat

compute y[l+1] such that LA(y[l+1], λ[k], µk) < LA(y[l], λ[k], µk)
(using unconstrained minimisation method)

l← l + 1
end
xk+1 := y[l]

λ
[k+1]
i := λ

[k]
i −

g̃i(xk+1)
µk

, (i ∈ E ∪ I),

λ
[k+1]
i ← max(0, λ

[k+1]
i ), (i ∈ I)

choose µk+1 ∈ (0, µk)
end

A quick argument gives insight into why this method can be expected to converge
before µk reaches very small values. We have

∇xLA(xk+1, λ
[k], µk) = ∇f(xk+1)−

∑

i∈E∪I

(

λ
[k]
i −

g̃i(xk+1)

µk

)

∇gi(xk+1).

Using ‖∇xLA(xk+1, λ
[k], µk)‖ ≤ τk, we find

∑

i

(

λ
[k]
i −

g̃i(xk+1)

µk

)

∇gi(xk+1) = ∇f(xk+1) + O(τk).

Arguments similar to those given in the proof of Theorem 2.2 in Lecture 13 show that

λ
[k]
i −

g̃i(xk+1)

µk

' λ∗
i , (i ∈ E ∪ I).

Therefore, we have

g̃i(xk+1) ' µk

(

λ
[k]
i − λ∗

i

)

, (i ∈ E ∪ I),
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which suggests that if λ[k] → λ∗ then all constraint residuals converge to zero like a
function o(µk), where

lim
µ→0

o(µ)

µ
= 0.

That is, the convergence is much faster than the O(µk) convergence obtained in the
quadratic penalty function method.

This argument can be made precise in a neighbourhood of a point at which the
sufficient second order optimality conditions hold. In fact, the following theorem in-
dicates that µ does not have to be reduced to zero at all.

Theorem 1.2. Let x∗ be a local minimiser of (NLP) where the LICQ and the
first and second order sufficient optimality conditions are satisfied for some Lagrange
multiplier vector λ∗. Then there exists a constant µ̄ > 0 such that x∗ is a strict local
minimiser of

min
x∈Rn

LA(x, λ∗, µ)

for all µ ∈ (0, µ̄].

For a proof see e.g. Nocedal–Wright, Theorem 17.5. Furthermore, this theorem
can be strengthened to show that if (xk, λ[k]) ever enters a sufficiently small neighbour-
hood of (x∗, λ∗) and µk ≤ µ̄, then it is the case that (xk, λ[k])→ (x∗, λ∗) irrespective
of whether µk is further decreased or not.

Theorem 1.3. For (x∗, λ∗) and µ̄ as in Theorem 1.2 there exist constants
M, ε, δ > 0 such that the following is true:

i) if µk ≤ µ̄ and

‖λ[k] − λ∗‖ ≤
δ

µk

, (1.2)

then the constrained minimisation problem

min
x
LA(x, λ[k], µk) (1.3)

s.t. ‖x∗ − x‖ ≤ ε

has a unique minimiser xk+1 and

‖x∗ − xk+1‖ ≤Mµk‖λ
[k] − λ∗‖, (1.4)

ii) if µk and λ[k] are as in part i) and if λ[k+1] is chosen as in Algorithm (AL),
then

‖λ[k+1] − λ∗‖ ≤Mµk‖λ
[k] − λ∗‖. (1.5)

We conclude with a few comments on why this result is interesting.
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• Without loss of generality, we may assume that µ̄ ≤ (2M)−1. Note that if
(λ[k], µk) satisfy the conditions of part i) of the theorem and if xk ∈ Bε(x

∗),
then xk is a good starting point for solving the problem (1.3) and we have

xk+1 ∈ Bε(x
∗)

‖λ[k+1] − λ∗‖
(1.2),(1.5)

≤ Mµk

δ

µk

= δM <
δ

µ̄
≤

δ

µk+1
,

where the last inequality follows from µk+1 ≤ µk. Thus, the same conditions
hold again, and by induction they hold for all subsequent iterations.

• Let k0 be the iteration where (1.4) and (1.5) first hold. Induction on k shows
that

‖λ[k] − λ∗‖, ‖xk − x∗‖ ≤ (Mµ̄)k−k0‖λ[k0] − λ∗‖ ≤
1

2k−k0
‖λ[k0] − λ∗‖.

This shows that xk → x∗ and λ[k] → λ∗ at a Q-linear rate if µ ≤ µ̄ is held
fixed.

Additional Recommended Reading: Section 17.4, Nocedal–Wright.
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