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1. The Merit Function. Again we consider the general nonlinear programming
problem

(NLP) min
x∈Rn

f(x)

s.t. gE(x) = 0

gI(x) ≥ 0.

In the previous two Lectures we have learned that nonlinear constraints can be
dealt with by incorporating a term forcing asymptotic feasibility into the objective
function. So far we used quadratic penalty terms to construct merit functions. The
barrier method makes another choice and is based on the merit function

P (x, µ) = f(x)− µ
∑

j∈I

ln gj(x) +
1

2µ

∑

i∈E

g2
i (x),

where µ > 0 is the homotopy parameter. Note that equality constraints are again
enforced using quadratic penalty terms that become gradually more stringent. The
penalty terms are defined for all x. Inequality constraints are managed via the barrier
term

−µ
∑

j∈I

ln gj(x)

which is only defined when all the gj(x) are strictly positive.

Definition 1.1. A point x ∈ R
n is admissible for (NLP) if all inequality con-

straints are satisfied. The point is called strictly admissible if all inequality constraints
are strictly satisfied, that is,

gj(x) > 0 (j = I)

holds. Note that admissible points may violate some or all of the equality constraints.
The sets of admissible and strictly admissible points respectively are called admissible
and strictly admissible domain.

The barrier term is thus only defined for strictly admissible points. We can extend
it outside the admissible domain by the convention

P (x, µ) =

{

P (x, µ) (x admissible),

+∞ (x inadmissible).

Note also that if (xk)N is a sequence of admissible points such that xk → x∗, where
x∗ is on the boundary of the admissible domain, then there exists j ∈ I such that
gj(xk)→ gj(x

∗) = 0, and then limk→∞ P (xk , µ) = +∞.
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Similarly to Algorithms QPen and AL, in each inner loop of the barrier method
a value µk > 0 is fixed and an unconstrained subproblem

min
y∈Rn

P (y, µk) (1.1)

is solved.
When we studied the method of Lagrange multipliers we saw that if the set of

active constraints at an optimal solution x∗ was known, then (NLP) would reduce
to a nonlinear zero-finding problem. Most of the techniques we developed for un-
constrained minimisation were based on a reduction to a zero-finding problem and
have a straightforward generalisation to the latter. Thus, constrained optimisation
is the same as a finite number of unconstrained problems with the extra difficulty
of finding which among the unconstrained problems yields the optimal solution. In
other words, the optimal active set A(x∗) has to be found, a combinatorial overhead
that is challenging, because the number of possible choices for A(x∗) is exponential
in the number of constraints.

The power of homotopy methods derives from avoiding that the full complexity
of this combinatorial overhead problem comes to the bear initially. In fact, the combi-
natorial problem is only introduced gradually through penalty and/or barrier terms.
The approach works because as an optimal solution x∗ is approached, the number of
different choices for A(x∗) narrows down dramatically. The barrier method achieves
this reduction in complexity because the barrier term keeps the iterates strictly ad-
missible and only gradually allows them to approach the boundary, and the quadratic
penalty term on the equality constraints ensures that the constraints are asymptoti-
cally satisfied, by making the equality constraint manifold {x : gE(x) = 0} attracting.

A mechanistic interpretation is as follows: imagine that a positive point charge is
moving in the admissible domain under the influence of a force acting on the particle
due to an electrostatic potential described by f . The boundary of the admissible do-
main is positively charged, so that the point particle is repelled from it, and the charge
on the boundary is gradually reduced as µ decreases. On the other hand, the equality
constraint manifold is negatively charged, so that it attracts the point charge, and the
the charge is increased as µ decreases. See Figure 1.1 for an illustration. Of course,
this mechanistic interpretation is just a mental picture; neither the barrier nor the
penalty term have gradients that are proportional to electrostatic forces as a function
of position. Instead, they are chosen so as to render the algorithms efficient in practice.

2. The Primal Barrier Method for Nonlinear Programming. We are
ready to formulate a first algorithm based on the merit function introduced above.

Algorithm 2.1. [PBM]
S0 Initialisation

choose µ−1 > µ0 > 0
choose ε0 > 0
choose x0 strictly admissible

S1 For k = 0, 1, 2, . . . repeat
solve the following equation for ẋ,

D2
xxP (xk , µk−1)ẋ +

∂

∂µ
∇xP (xk , µk−1) = 0
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PSfrag replacements

~Fres

~Frep

~Fatt

~Fpot

{gE(x) = 0}

Fig. 1.1. Mechanistic interpretation of the merit function: the external forces acting on a posi-

tive point charge are the attracting force ~Fatt towards the equality constraint manifold, the repelling

force ~Frep away from inequality constraints, and the force ~Fpot due to the potential, resulting in the

total force ~Fres.

y[0] := xk + (µk − µk−1)ẋ
l:=0
until ‖∇xP (y[l], µk)‖ ≤ εk repeat

compute y[l+1] such that P (y[l+1], µk) < P (y[l], µk)
% (using unconstrained minimisation method)

l← l + 1
end
xk+1 := y[l]

choose µk+1 < µk % (usually µk+1 = θµk for some θ ∈ (0, 1))
choose εk+1 < εk

end

2.1. Finding an Admissible Starting Point. Note that in the initialisation
step we need to find a strictly admissible point. This is not a problem, because we can
use the same algorithm to generate such a point by solving the auxiliary optimisation
problem

(AUX) min
(x,t)

t

s.t. gj(x) + t ≥ 0, (j ∈ I),

for which finding an admissible initial solution can be readily generated as follows,

x0 ∈ R
n arbitrary,

t0 := −min{gj(x0) : j ∈ I}+ 1,

and for which the algorithm will eventually find tk < 0 if and only if (NLP) has strictly
admissible points. When such a tk is found, xk is strictly admissible for (NLP) and
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can be used as a starting point for Algorithm PBM applied to (NLP). The auxiliary
problem (AUX) is sometimes referred to as phase I problem.

2.2. Convergence of the Algorithm. The termination criterion in the inner
loop guarantees that

∇xP (xk, µk−1) = ∇f(xk)−
∑

j∈I

µk−1

gj(xk)
∇gj(xk)

+
∑

i∈E

gi(xk)

µk−1
∇gi(xk) = O(εk−1). (2.1)

Arguments similar to those used Lecture 13 show the following convergence result:

Theorem 2.2. Let x∗ = liml→∞ xkl
be an accumulation point of the sequence

(xk)N0
generated by Algorithm PBM, where (kl)N0

is a subsequence of (k)N0
. If the set

of gradient vectors {∇gi(x
∗) : i ∈ V(x∗)} is linearly independent, then the following

properties hold true:

(i) x∗ is feasible,
(ii) the LICQ holds at x∗,
(iii) the limit λ∗ = liml→∞ λ[kl] exists, where

λ
[k]
i =

{

µk−1

gi(xk) , (i ∈ I)
− gi(xk)

µk−1

(i ∈ E), (2.2)

(iv) (x∗, λ∗) is a KKT point of (NLP).

2.3. Selection of the Starting Point in the Inner Loop. Note that Algo-
rithm PBM determines a starting point y[0] for the inner loop in a somewhat intricate
way. Why not use y[0] = xk instead? While this is certainly a valid choice, it leads
to poor convergence because the step sizes are restricted to small values. Let us now
analyse this phenomenon and assume that the starting point y[0] = xk is chosen for
the inner loop:

When a Newton step is applied to the subproblem (1.1) at y = xk : the Newton–
Raphson update ∆x ∈ R

n satisfies the system

D2
xxP (xk, µk)∆x = −∇xP (xk, µk). (2.3)

But

D2
xxP (xk , µk) =



D2f(xk)− µk

µk−1

∑

j∈I

( µk−1

gj(xk)

)

D2gi(xk)− µk−1

µk

∑

i∈E

(

−gi(xk)

µk−1

)

D2gi(xk)





+





∑

j∈I

µk

g2
j (xk)

∇gj(xk)∇gj(xk)T +
1

µk

∑

i∈E

∇gi(xk)∇gi(xk)T





= C(xk , µk) + AT(xk, µk)A(xk , µk),
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where the columns of the matrix AT consists of the vectors
{ √

µk

gj(xk)
∇gj(xk) : (j ∈ I)

}

∪
{

1√
µk

∇gi(xk) : (i ∈ E)
}

.

Note that (2.2) implies ‖C(xk, µk)‖ = O(1), whereas

∥

∥AT(xk, µk)A(xk , µk)
∥

∥ = O
(

max
(

µ−1
k , max

i

(

gi(xk)−1
)

))

.

On the one hand, this leads to an ill-conditioned Newton system (2.3), unless

AT(x∗, 0)A(x∗, 0) := lim
l→∞

A(xkl
, µkl

)

has either rank 0 or n. This is a minor problem, because a careful implementation
as outlined in the last paragraph of Lecture 12 replaces the system (2.3) by a well-
conditioned equivalent one.

On the other hand, a problem that affects the performance of the primal barrier
method far more adversely is that the solution ∆x of (2.3) is badly scaled: whenever
D2

xxP (xk , µk) is ill-conditioned due to rank
(

AT(x∗, 0)A(x∗, 0)
)

/∈ {0, n}, we have

∑

j∈V(x∗)∩I

µk∇gT
j (xk)∆x

g2
j (xk)

∇gj(xk) +
∑

i∈E

∇gT
i (xk)∆x

µk

∇gi(xk)

≈ AT(xk, µk)A(xk , µk)∆x ≈ D2
xxP (xk , µk)∆x = −∇xP (xk, µk)

≈ −∇f(xk) +
∑

j∈V(x∗)∩I

µk

gj(xk)
∇gj(xk)−

∑

i∈E

gi(xk)

µk

∇gi(xk)

(2.1)
≈

∑

j∈V(x∗)∩I

µk − µk−1

gj(xk)
∇gj(xk) +

∑

i∈E

(µk − µk−1)gi(xk)

µkµk−1
∇gi(xk).

Since the LICQ holds at x∗, this implies that

∇gT
j (xk)∆x ≈

(

1− µk−1

µk

)

gj(xk), (j ∈ I ∩ V(x∗)),

and hence,

gj(xk + ∆x) ≈ gj(xk) +∇gT
j (xk)∆x ≈

(

2− µk−1

µk

)

gj(xk).

But 2−µk−1/µk < 0 for µk < µk−1/2, and this shows that only a modest reduction of
µk is possible in each iteration, because otherwise the Newton step applied at y[0] = xk

takes the iterate outside of the admissible domain and strong damping must be used
to shorten the step size.

Of course, this only shows that using y[0] = xk as a starting point for the inner
loop is a bad choice; it can be shown that the formula for y[0] given in Algorithm
PBM behaves much better.

3. The Primal-Dual Barrier Method. The bad scaling of the primal barrier
method can be overcome by exploiting the fact that Lagrange multiplier estimates
become available as µ is decreased. This leads to the primal-dual barrier method
which we will describe next.
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The relationship between the primal barrier method and the primal-dual barrier
method is in some ways similar to the relationship between the quadratic penalty
function method and the augmented Lagrangian method of Lectures 13 and 14.

The KKT conditions of (NLP) are as follows,

∇f(x)−
∑

i

λi∇gi(x) = 0 (3.1)

gE(x) = 0 (3.2)

λjgj(x) = 0 (j ∈ I) (3.3)

λI , gI(x) ≥ 0. (3.4)

The primal-dual barrier method can be motivated by the following two ideas:

(i) guarantee that (3.4) holds through the application of line searches to prevent
iterates to become inadmissible,

(ii) perturb the right hand side of the complementarity equations (3.3) by µ.

Thus, in each iteration of the algorithm one or several damped Newton steps are
applied to the nonlinear system of equations

∇f(x)−
∑

i

λi∇gi(x) = 0

gE(x) = 0

λjgj(x) = µ. (j ∈ I)

(3.5)

The corresponding Newton system is

(

D2f(x)−∑

i λiD
2gi(x)

)

∆x −
(

g′
I∪E

(x)
)T

∆λ = −∇f(x) +
(

g′
I∪E

(x)
)T

λ
g′E(x)∆x = −gE(x)

Diag(λ)g′
I
(x)∆x + Diag(gI(x))∆λ =

[

µ

...
µ

]

−Diag(λ)gI(x)

,

(3.6)
where Diag(v) denotes a diagonal matrix with a vector v on its diagonal. The algo-
rithm is as follows:
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Algorithm 3.1 (PDBM).
S0 Initialisation

choose µ−1 > µ0 > 0
choose ε0 > 0
choose x0 strictly admissible

choose λ[0] such that λ
[0]
I
≥ 0

choose θ ∈ (0, 1)
S1 For k = 0, 1, 2, . . . repeat

y[0] = xk

η[0] = λ[k]

l := 0
∆x, ∆λ = +∞
until ‖∆x, ∆λ‖ ≤ εk repeat

solve (3.6) for (∆x, ∆λ), setting (x, λ, µ) := (y[l], η[l], µk)
αmax := max

{

α ≥ 0 : gI(y[l] + α∆x) ≥ 0, (η[l] + α∆λ)I ≥ 0
}

choose αl ∈ (0, max{1, 0.98× αmax}]
(y[l+1], η[l+1]) = (y[l], η[l]) + αl(∆x, ∆λ)
l← l + 1

end
(xk+1, λ

[k+1]) := (y[l], η[l])
µk+1 = θµk

choose εk+1 ∈ (0, εk)
end

Note that we initialised the starting vector for the inner loop by y[0] = xk. In
contrast to the primal barrier method, the primal-dual barrier method works fine with
this choice, as a somewhat intricate analysis shows. In Lecture 16 we will analyse the
primal-dual barrier method for linear programming in further detail.
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