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1. Interior-Point Methods for Linear Programming. The barrier method
we studied in Lecture 15 is an example of a so-called interior-point method: all inter-
mediate solutions are in the interior of the admissible domain. Although originally
devised for nonlinear programming, it was discovered in the mid 1980-ies that such
algorithms can also solve linear programming problems very efficiently.

Crucially, these algorithms can be designed so that they run in polynomial time,
that is, an upper bound on the number of bit operations performed by the algorithm
until completion can be given as a polynomial in the bit-length of the input data
(A, b, c) of a LP instance

(P) min
x∈Rn

cTx

s.t. Ax = b,

x ≥ 0.

The simplex algorithm on the other hand is known to take a number of bit op-
erations that is exponential in the bit-length of (A, b, c) on certain LP instances.
The emergence of polynomial-time interior-point methods for LP has therefore been
hailed as a great success, and it has sparked a huge research effort into improving
these methods and extending them to other convex problem classes.

Today, interior-point methods are often the best approach to solving very large
scale LP problems, and they are the method of choice for other important classes
of convex programming. We cannot enter the discussion of methods that underlie
industrial-strength software here, but we will use this lecture to outline the design
and analysis of the simplest case of such an algorithm.

2. Perturbations of LP problems. Recall the primal and dual linear pro-
gramming problems in standard form:

(P) min
x∈Rn

cTx

s.t. Ax = b,

x ≥ 0.

(D) max
y∈Rm

bTy

s.t. ATy + s = c,

s ≥ 0.

For the purposes of the developing a lean theory, we will make the following reg-
ularity assumptions:

Definition 2.1. We say that (P) and (D) satisfy the standard LP regularity
assumption if the following conditions are met:
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i) A has linearly independent row vectors, that is, rank(A) = m,
ii) (P) is strictly feasible, that is, there exists a point x ∈ R

n such that Ax = b
and x > 0 componentwise,

iii) (D) is strictly feasible, that is, there exist points (y, s) ∈ R
m × R

n such that
ATy + s = c and s > 0 componentwise.

Note that these regularity assumptions are nothing else but the Slater constraint
qualification both for (P) and (D). Whenever the standard LP regularity assumption
does not hold, we can preprocess the input data A, b, c of the problems (P),(D) and
obtain equivalent problems (P’),(D’) that satisfy the assumption. Thus, there is no
loss of generality in assuming that (P) and (D) are regular.

The following notation will subsequently be used for the primal, dual and primal-
dual feasible domains:

FP = {x : Ax = b, x ≥ 0},
FD = {(y, s) : ATy + s = c, s ≥ 0},
F◦

P = {x : Ax = b, x > 0},
F◦

D = {(y, s) : ATy + s = c, s > 0},
F◦=F◦

P ×F◦
D.

For µ > 0 we consider the following perturbations of (P) and (D):

(P)µ min
x∈Rn

cTx + µf(x)

s.t. Ax = b

x > 0.

(D)µ max
y∈Rm

bTy − µf(s)

s.t. ATy + s = c,

s > 0.

In both problems

f : R
n
++ → R

x 7→ −
n

∑

j=1

log(xj)

is the logarithmic barrier function.
In Problem Set 6 we studied the duality/optimality theory of problems (P)µ and

(D)µ and found the following result:

Theorem 2.2. Let (P),(D) satisfy the standard LP regularity assumption. Then
x(µ) ∈ R

n and
(

y(µ), s(µ)
)

∈ R
m × R

n are optimal for (P)µ and (D)µ respectively if
and only if the following system holds true:

ATy + s = c
Ax = b

XSe = µe
x, s > 0,

(2.1)
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where X = Diag(x), S = Diag(s) and e = [ 1 ... 1 ]T.

Notice how nicely this approximates the system of equations and inequalities that
characterise optimal solutions for (P) and (D): since (P) and (D) satisfy the Slater
conditions, Corollary 3.3 of Lecture 12 shows that (x, y, s) are primal-dual optimal if
and only if the KKT conditions hold, that is,

ATy + s = c
Ax = b

XSe = 0
x, s > 0.

(2.2)

The only difference between (2.1) and (2.2) is that the complementarity equations
XSe = 0 have been replaced by the approximate complementarity conditions XSe =
µe.

This is exactly how we motivated the primal-dual barrier method in the nonlinear
programming case, but here we see that there is a deeper reason for perturbing the
complementarity equations in this fashion: the new equations correspond to the KKT
equations of a primal-dual pair of perturbed problems (P)µ and (D)µ.

3. The central path. Equations (2.1) are called the central path equations.

Theorem 3.1. Let (P),(D) satisfy the standard LP regularity assumptions and let
µ > 0. Then the central path equations (2.1) have a unique solution

(

x(µ), y(µ), s(µ)
)

.

Proof. Theorem 2.2 showed that (x, y, s) solves the central path equations if and
only if x is optimal for (P)µ and (y, s) is optimal for (D)µ. Since (P)µ and (D)µ are
strictly convex problems, their optima are unique if they do exist. Thus, uniqueness
is automatic once we have shown existence. Moreover, since (P)µ and (D)µ are of the
same form, it suffices to establish this for (P)µ. We will rely on the well-known fact
that any continuous function defined on a compact set has a minimiser in this set
(this fact follows from the Bolzano-Weierstrass theorem).

Let x̂ and (ŷ, ŝ) be strictly feasible primal and dual solutions, that is, the following
system is satisfied:

Ax̂ = b

x̂ > 0

ATŷ + ŝ = c

ŝ > 0.

Note that Ax = b implies

cTx = (ATŷ + ŝ)Tx = bTŷ + ŝTx.

Therefore, (P)µ is equivalent to

min ŝTx + µf(x)

s.t. Ax = b,

ŝTx + µf(x) ≤ ŝTx̂ + µf(x̂).
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Now note that since x̂, ŝ > 0, there exist vectors l, u > 0 such that

ŝTx + µf(x) ≤ ŝTx̂ + µf(x̂) ⇒ l ≤ x ≤ u.

Therefore, (P)µ is equivalent to

(P’)µ min ŝTx + µf(x)

s.t. Ax = b,

l ≤ x ≤ u.

Since {x : Ax = b, l ≤ x ≤ u} is a compact subset of R
n
++ and ŝTx + µf(x) is contin-

uous, the minimum of (P’)µ is attained.

Definition 3.2. For µ > 0 let us write
(

x(µ), y(µ), s(µ)
)

for the unique solution
of the central path equations (2.1). Then the set {x(µ) : µ > 0} is called the primal
central path, {(y(µ), s(µ) : µ > 0} is the dual central path, and {(x(µ), y(µ), s(µ)) :
µ > 0} is the primal-dual central path.

The central paths are smooth curves leading to a primal-dual optimal pair of
solutions for the original problems (P),(D):

Theorem 3.3. The map

µ 7→
(

x(µ), y(µ), s(µ)
)

is continuously differentiable. Furthermore, there exist x∗ and (y∗, s∗) which are op-
timal solutions to (P) and (D) respectively such that

lim
µ↓0

(

x(µ), y(µ), s(µ)
)

= (x∗, y∗, s∗).

4. A primal-dual interior-point algorithm. The critical step of our primal-
dual interior-point algorithm will be the following: given an approximate solution
(x, y, s) to the central path equations (2.1), find a better approximation.

An obvious approach is to apply Newton’s method to find a zero of the map





x
y
s



 7→





ATy + s − c
Ax − b

XSe− µe



 ,

that is, we solve the system





0 AT I
A 0 0
S 0 X









∆x
∆y
∆s



 = −





ATy + s − c
Ax − b

XSe− µe



 (4.1)

for (∆x, ∆y, ∆s) and set





x+

y+

s+



 :=





x
y
s



 +





∆x
∆y
∆s



 .
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Note that we have neglected the positivity constraints x, s > 0 of the central path
equations. We could enforce these by taking a damped Newton step α(∆x, ∆y, ∆s)T

rather than the full step (∆x, ∆y, ∆s)T when this takes (x̄+, ȳ+, s̄+) outside of the
domain x, s > 0, just as we did in our barrier methods for nonlinear programming.
However, a nice feature of our algorithm will be that this issue is dealt with automat-
ically through the notion of centrality developed below.

We will now describe and analyse an algorithm that iterates over points that
satisfy the constraints

ATy + s = c

Ax = b

x, s > 0

(4.2)

but not necessarily the equation XSe = µe. This requires a starting point (x, y, s)
that satisfies (4.2). This issue can be dealt with via a phase I type auxiliary problem.
Thus, we may simply assume that such a point is available.

4.1. Centrality and the Duality Gap. In order to be able to assure that the
iterates of our algorithm stay well inside the domain x, s > 0, we need a measure of
centrality, or of “nearness” to the central path.

Definition 4.1. For all ω = (x, y, s) ∈ F◦ =
{

(x, y, s) : ATy + s = c, Ax =

b, x, s > 0
}

we define

µ(ω) :=

∑n
j=1 xjsj

n
.

Recall that LP duality showed that any feasible solution of (P) yields an upper
bound on the optimal solution of (D), and any feasible solution of (D) yields a lower
bound on the optimal solution of (P).

Definition 4.2. Let x and (y, s) be primal and dual feasible points. The duality
gap associated with these solutions is defined as cTx − bTy.

Strong LP duality shows that the duality gap becomes zero at a primal-dual
optimal point ω∗ = (x∗, y∗, s∗). The number µ(ω) is useful in monitoring the progress
of an algorithm because it is proportional to the duality gap: if ω = (x, y, s) is primal-
dual feasible, then

cTx − bTy = xT(c − ATy) = xTs = nµ(ω).

It is thus reasonable to fix a number σ ∈ (0, 1) and to set µ = σµ(ω) in the system
(4.1). That is to say, we are aiming to reduce the duality gap by a constant factor in
each iteration.

Another interesting observation is that ω = (x, y, s) ∈ F◦ lies on the primal-dual
central path if and only if XSe = µ(ω)e. This can be used to define a neighbourhood
of the central path:

Definition 4.3. For θ ∈ (0, 1), let

N2(θ) :=
{

ω = (x, y, s) ∈ F◦ : ‖XSe− µ(ω)e‖2 ≤ θµ(ω)
}

.
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Note that this notion “distance θ” from the central path is homogenised by µ(ω):
for ω corresponding to a smaller duality gap, the distance must be proportionally
smaller for ω to lie in N2(θ). That is to say, the neighbourhood narrows down as
the central path approaches the optimal solution ω∗ = (x∗, y∗, s∗) as guaranteed by
Theorem 3.3. This feature is necessary to prevent the algorithm from going off-track.

4.2. The Main Motivation of the Algorithm. In each main iteration of our
interior-point algorithm we aim at achieving two separate conflicting goals:

i) we want to reduce the duality gap by a constant factor,
ii) we want to stay near the central path, because we know that this will lead

us to the optimal solution of the problem pair (P),(D).

We decided to aim for the point ωµ that corresponds to the barrier parameter
value µ = σµ(ω), in order to reduce the duality gap by a constant factor. If we start
with a point ωk ∈ N2(θ), we want the update ωk+1 = ωk + ∆ω obtained from the
solution of the system





0 AT I
A 0 0
Sk 0 Xk









∆x
∆y
∆s



 = −





0
0

XkSke − σµ(ωk)e



 (4.3)

to end up in N2(θ) again, see Figure 4.1, so that we can apply the same analysis in each
iteration. Note that (4.3) was obtained from (4.1) by substituting ωk = (xk , yk, sk)
and using the fact that ωk is primal-dual feasible.

Unfortunately, if σ is chosen too small and we aim for too radical a reduction of
the duality gap in each iteration, then ωk+1 will lie outside of N2(θ), see Figure 4.2.
The choice of σ must therefore be sufficently large but still quantifiably low for the
algorithm to be well-defined and efficient. Thus, there must be a functional depen-
dence between θ and σ. We will see in Section 5 that a good choice of parameters
is obtained as in the initialisation step S0 of the following primal-dual “short-step”
path-following (SPF) algorithm:

PSfrag replacements

ω0

ω1

ωk

ω∗

ωµ

F◦

N2(θ)

Fig. 4.1. The SPF algorithm follows the central path without leaving the neighbourhood N2(θ)

4.3. The Algorithm. We are ready to formulate the primal-dual short-step
path-following algorithm for LP:
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PSfrag replacements

ω0

ω1

ωk

ω∗

ωµ

F◦

N2(θ)

Fig. 4.2. Choosing σ too small and aiming at a point ωµ too far away makes the update leave

the narrow neighbourhood N2(θ).

Algorithm 4.4 (SPF).
S0 Choose θ, δ ∈ (0, 1) be such that

θ2 + δ2

23/2(1 − θ)
≤

(

1 − δ√
n

)

θ.

Set σ := 1 − δ√
n

and choose ω0 = (x0, y0, s0) ∈ N2(θ).

S1 For k = 0, 1, . . . repeat
solve (4.3) with ω = ωk for ∆ω := (∆x, ∆y, ∆s)
compute ωk+1 = ωk + ∆ω

end

5. Convergence Analysis of Algorithm SPF. Let us now analyse the con-
vergence of the primal-dual short-step path-following method SPF. Our main theorem
shows that θ and σ were chosen so that the iterates never leave the narrow neighbour-
hood N2(θ) of the central path, and that the duality gap shrinks at a geometric rate:

Theorem 5.1. The sequence (ωk)N generated by Algorithm SPF satisfies ωk ∈
N2(θ) for all k ∈ N, and

µ(ωk) =

(

1 − δ√
n

)k

µ(ω0).

An immediate consequence of Theorem 5.1 is that it takes only logarithmically
many iterations to reduce the duality gap below a desired threshold ε > 0:

Corollary 5.2. After at most k = O
(√

n log n×µ(ω0)
ε

)

iterations Algorithm SPF
produces a point ωk = (xk, yk, sk) ∈ F◦ such that

cTxk − bTyk ≤ ε.

Theorem 5.1 readily follows from the following result:

7

Lemma 5.3. Let ω = (x, y, s) ∈ N2(θ) and let ω+ = (x+, y+, s+) = ω + ∆ω,
where ∆ω = (∆x, ∆y, ∆s) solves the system





0 AT I
A 0 0
S 0 X









∆x
∆y
∆s



 = −





0
0

XSe− σµ(ω)e



 (5.1)

with σ = 1− δ√
n

and θ, δ chosen as in the initialisation step of Algorithm SPF. Then

ω+ ∈ N2(θ) and µ(ω+) = σµ(ω).

Proof. Let µ+ =
(

1− δ√
n

)

µ(ω). We claim that the following three relations hold
true:

µ+ =
eTX+S+e

n
, (5.2)

‖X+S+e − µ+e‖ ≤ θµ+, (5.3)

x+, s+ > 0. (5.4)

Clearly, these relations imply that the lemma holds true.

We will establish the validity of Claims (5.2), (5.3), and (5.4) separately after
proving the following two technical lemmas:

Lemma 5.4. ∆xT∆s = 0.

Proof. This follows readily from the first two blocks of equations in (5.1).

Lemma 5.5. Let u, v ∈ R
n be such that uTv ≥ 0 and let U = Diag(u), V =

Diag(v). Then

‖UV e‖ ≤ ‖u + v‖2

23/2
.

Proof. First note that for all α, β ∈ R such that αβ ≥ 0 it is the case that

|αβ| ≤ (α + β)2

4
. (5.5)

Consider the index sets I := {j : ujvj ≥ 0} and J := {j : ujvj < 0}. Using this
notation we can write uTv =

∑

j∈I |ujvj | −
∑

j∈J |ujvj | ≥ 0. Therefore,

‖UV e‖2 =
∑

j∈I

(ujvj)
2 +

∑

j∈J

(ujvj)
2 = ‖uvI‖2

2 + ‖uvJ‖2
2

≤ ‖uvI‖2
1 + ‖uvJ‖2

1 ≤ 2‖uvI‖2
1,

where uvI is a vector of length |I | with components {ujvj : j ∈ I} and similarly for
uvJ , and where we used the well-known fact that ‖ · ‖2 ≤ ‖ · ‖1. Finally, this proves
that

‖UV e‖ ≤
√

2‖uvI‖1

(5.5)

≤
√

2

4

∑

j∈I

(uj + vj)
2 ≤ ‖u + v‖2

23/2
.
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Lemma 5.6. Claim (5.2) is true.

Proof. First note that (5.1) implies

X+S+e = (X + ∆X)(S + ∆S)e = XSe + X∆s + S∆x + ∆X∆Se

= µ+e + ∆X∆Se. (5.6)

Using Lemma 5.4 in conjunction with (5.6), we obtain

eTX+S+e = nµ+ + eT∆X∆Se = nµ+ + ∆xT∆s = nµ+.

Lemma 5.7. Claim (5.3) is true.

Proof. Equation (5.6) shows that

‖X+S+e − µ+e‖ = ‖∆X∆Se‖. (5.7)

To bound the right hand side of this equation, consider the matrix D = X
1

2 S− 1

2 . The
last block of equations of (5.1) multiplied by X− 1

2 S− 1

2 can then be written as

D−1∆x + D∆s = (XS)−
1

2 (µ+e − XSe). (5.8)

Moreover, Lemma 5.4 shows that (D−1∆x)T(D∆s) = 0, which makes it possible to
apply Lemma 5.5 to find

‖∆X∆Se‖ = ‖(D−1∆X)(D∆S)e‖
≤ 2−3/2‖D−1∆x + D∆s‖2

(5.8)

≤ ‖XSe− µ+e‖2

23/2 × min{xjsj}
. (5.9)

Because of the assumption ω ∈ N2(θ), we have

‖XSe− µ(ω)e‖ ≤ θµ(ω) (5.10)

and hence, xjsj ≥ (1 − θ)µ(ω) for all j. Substituting this in (5.9), we find

‖∆X∆Se‖ ≤ ‖XSe− µ+e‖2

23/2(1 − θ)µ(ω)

=
(

23/2(1 − θ)µ(ω)
)−1 ×

(

‖XSe− µ(ω)e‖2 + ‖(µ(ω) − µ+)e‖2) (5.11)

(5.10)

≤ θ2µ(ω)2 + δ2µ(ω)2

23/2(1 − θ)µ(ω)
=

θ2 + δ2

23/2(1 − θ)
µ(ω) ≤

(

1 − δ√
n

)

θµ(ω)

= θµ+,

where (5.11) holds because

eTXSe− µ(ω)eTe =

n
∑

j=1

xjsj − nµ(ω) = 0
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shows that XSe− µe ⊥ e.

Lemma 5.8. Claim (5.4) is true.

Proof. We begin with the case θ ≤ 1/2 which is easier to understand. Relation
(5.3) shows that (x+)j(s+)j ≥ (1 − θ)µ+ > 0 for all j. So, if (x+)j < 0 for some j
then (s+)j is negative too, and then

∆xj∆sj ≥ (x+)j(s+)j > (1 − θ)µ+. (5.12)

On the other hand,

∆xj∆sj ≤ ‖∆X∆Se‖
(5.3),(5.7)

≤ θµ+. (5.13)

The combination of (5.12) and (5.13) yields

(1 − θ)µ+ ≤ ∆xj∆sj < θµ+

which implies the contradiction 2θ > 1 and proves the claim.
If we do not assume θ ≤ 1/2, we can proceed as follows: let

ω(α) :=
(

x(α), y(α), s(α)
)

:= (x, y, s) + α(∆x, ∆y, ∆s).

Proceeding as in the proof of (5.2) and (5.3), one can establish that for all α ∈ [0, 1],

µ
(

ω(α)
)

=
eTX(α)S(α)e

n
=

(

1 − αδ√
n

)

µ(ω),

and ‖X(α)S(α)e− µ(ω(α))e‖ ≤ θµ(ω(α)). Thus, xj(α)sj(α) ≥ (1− θ)µ(ω(α)) for all
α ∈ [0, 1]. This implies xj(α), sj(α) > 0 for all α ∈ [0, 1] by continuity of x(α), s(α)
and by the fact that (1 − θ)µ(ω(α)) > 0. In particular, x+ = x(1) > 0 and s+ =
s(1) > 0, which proves the claim.
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