
SECTION C: CONTINUOUS OPTIMISATION

LECTURE 2: THE DESCENT METHOD AND LINE-SEARCHES

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2005, DR RAPHAEL HAUSER

1. Unconstrained Optimisation. The subject of this chapter is the uncon-
strained minimisation problem

min
x∈Rn

f(x), (1.1)

where f is a continuous objective function. Note that no constraints imposed on
the decision variables! Furthermore, we usually assume that f is C2 with Lipschitz-
continuous Hessian, that is, there exists Λ > 0 such that

‖D2f(x)−D2f(y)‖ ≤ Λ‖x− y‖ ∀x, y ∈ R
n.

In all that follows ‖x‖ =
√
∑

x2
i denotes the Euclidean norm of a vector x ∈ R

n

and 〈·, ·〉 is the corresponding Euclidean inner product. If A : R
n → R

m is a linear
map, then ‖A‖ denotes the operator norm defined by the Euclidean norms on R

n and
R

m, that is,

‖A‖ = inf{λ > 0 : ‖Ax‖ ≤ λ‖x‖ ∀x ∈ R
n}.

The gradient ∇f(x) of a function f : R
n → R is sometimes denoted by gf (x), and

its Hessian D2f(x) by Hf (x). The Jacobian Df(x) of a function f : R
n → R

m is
sometimes denoted by Jf (x). Note: if m = 1 then Jf (x) = gf (x)T. We will also use
the so-called “big O” notation: we say that a function g(x) is of order ‖x‖k and write
g(x) = O(‖x‖k) if there exists a constant c > 0 and a δ > 0 such that |g(x)| ≤ c‖x‖k

whenever ‖x‖ < δ.

Example 1.1 (Risk minimisation under shortselling). Let us go back to Example

2 of Lecture 1. By eliminating xn = 1−
∑n−1

i=1 xi we can get rid of the constraint

n
∑

i=1

xi = 1.

Furthermore, if we allow short-selling of assets, the constraints

xi ≥ 0 (i = 1, . . . , n)

are no longer imposed. Finally, let us suppose all the assets considered have the same
expected return µi ≡ µ, so that the constraint

n
∑

i=1

µixi ≥ b

can be omitted. The investor’s aim is to minimise the risk, which can be modelled as

min
x∈Rn−1

f(x1, . . . , xn−1) =

n−1
∑

i=1

n−1
∑

j=1

σijxixj +

n−1
∑

j=1

σnj

(

1−
n−1
∑

i=1

xi

)

xj

+
n−1
∑

i=1

σinxi

(

1−
n−1
∑

j=1

xj

)

+ σnn

(

1−
n−1
∑

i=1

xi

)(

1−
n−1
∑

j=1

xj

)

.

1

Since the objective function f is a quadratic (degree 2) polynomial in the decision
variables x1, . . . , xn−1, we have f ∈ C∞. Moreover, the Hessian D2f(x) is the same
(n− 1)× (n− 1) matrix







1 0 −1
. . . −1

0 1 −1













σ11 . . . σ1n

. . .

σn1 . . . σnn

















1 0
. . .

0 1
−1 . . . −1











for all x, and hence x 7→ D2f(x) is a constant function, which is of course Lipschitz-
continuous: ‖D2f(x)−D2f(y)‖ = 0 ≤ 0× ‖x− y‖ ∀x, y ∈ R

n−1.

Example 1.2. On a CAD system it takes n parameters x1, . . . , xn to define the
shape of a car. An engineer has a piece of software which takes the design parameters
x ∈ R

n as input and computes the air resistance f(x) of the corresponding fuselage
as output. The software contains typically millions of lines of code, but for theoret-
ical reasons it is known that f ∈ C2. Using an automatic differentiation system,
the engineer can automatically produce a piece of software that computes directional
derivatives

Dvf(x) =
d

dt
f(x + tv), Du,vf(x) =

d2

ds dt
f(x + su + tv).

How to choose the design parameters so as to minimise the drag on the fuselage?

Note that in this example the objective function is not available explicitly. This
is typical for many applications. In fact, evaluating the objective function might even
involve measurements in a physical experiment. Besides from appearing as subprob-
lems in constrained optimisation procedures, unconstrained optimisation problems
also appear in many applications directly.

2. Optimality Conditions for Unconstrained Minimisation. A well de-
signed optimization algorithm should be able to recognise when an approximate min-
imum has been attained. We therefore need a mathematical characterisation of local
minimisers.

At school we all learned that in the univariate case, a necessary condition is that
f ′(x) = 0, and that second derivatives help deciding whether x is a local maximiser
or minimiser. The same idea works in higher dimensions:

Theorem 2.1.
(i) If f : R

n → R is differentiable at x∗ ∈ R
n and has a local minimum there,

then ∇f(x∗) = 0, that is, x∗ is a stationary point of f . This is a first order
necessary optimality condition, because it involves first derivatives, or the first
order Taylor approximation of f .

(ii) If f : R
n → R is twice differentiable at x∗ ∈ R

n and has a local minimum
there, then the Hessian D2f(x∗) is positive semidefinite, that is, hTD2f(x∗)h ≥
0 for all h ∈ R

n. This is a second order necessary optimality condition.
(iii) If f : R

n → R is twice differentiable at x∗ ∈ R
n, and if ∇f(x∗) = 0 and

D2f(x∗) is positive definite, that is, if hTD2f(x∗)h > 0 for all h ∈ R
n \ {0},

then x∗ is a local minimiser of f . These are sufficient optimality conditions.

2

Proof. (i) Since x∗ is a local minimiser, there exists ε > 0 such that

f(x∗) ≤ f(x∗ + h), ∀h ∈ Bε(0), (2.1)

where Bε(0) is the open ball of radius ε around the origin in R
n. But this implies that

〈∇f(x∗), h〉 = lim
t→0

f(x∗ + th)− f(x∗)

t
≥ lim

t→0

f(x∗)− f(x∗)

t
= 0, ∀h ∈ R

n.

In particular, when we apply this inequality to h = −∇f(x∗), we find

0 ≤ 〈∇f(x∗),−∇f(x∗)〉 = −‖∇f(x∗‖2 ≤ 0.

(ii) Taking part (i) into account, the second order Taylor approximation of f
around x∗ is

f(x∗ + h) = f(x∗) + 〈∇f(x∗), h〉+
1

2
hTD2f(x∗)h + O(‖h‖3)

(i)
= f(x∗) +

1

2
hTD2f(x∗)h + O(‖h‖3). (2.2)

If D2f(x∗) is not positive semidefinite, then there exists a nonzero vector p ∈ R
n such

that pT∇f(x∗)p < 0, and then we have

f(x∗ + tp) = f(x∗) +
t2

2
pTD2f(x∗)p + O(t3‖p‖3).

Let c, δ > 0 be such that |O(‖h‖3)| ≤ c‖h‖3 for all h ∈ Bδ(0), and let ε be chosen as
in part (i). Then for all

t < min

(

ε

‖p‖
,

δ

‖p‖
,
−pTD2f(x∗)p

2c‖p‖3

)

we have

t2

2
pTD2f(x∗)p + O(‖tp‖3) <

t2

2
pTD2f(x∗)p + c‖p‖3t3 < 0,

and then f(x∗ + tp) < f(x∗), contradicting (2.1), because ‖tp‖ < ε.

(iii) Let us again consider the second order Taylor approximation (2.2) of the
function f(x∗ + h) as a function of h. Since D2f(x∗) is positive definite symmetric,
all of its eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σn > 0 are strictly positive and there exists an
orthonormal basis v1, . . . , vn of eigenvectors corresponding to these eigenvalues. That
is to say,

〈vi, vi〉 = 1, ∀i,

〈vi, vj〉 = 0, ∀i 6= j,

D2f(x∗)vi = σivi, ∀i.

Note that this means that for any h ∈ R
n we have

h =

n
∑

i=1

〈vi, h〉vi, and D2f(x∗)h =

n
∑

i=1

〈vi, h〉σivi.

3

Therefore,

hTD2f(x∗)h =

(

n
∑

i=1

〈vi, h〉vi

)T




n
∑

j=1

〈vj , h〉σjvj



 =
∑

i,j

〈vi, h〉〈vj , h〉σj〈vi, vj〉

=

n
∑

i=1

〈vi, h〉
2σi ≥ σn

n
∑

i=1

〈vi, h〉
2 = σn

n
∑

i=1

〈

〈vi, h〉vi, 〈vi, h〉vi

〉

= σn

〈

n
∑

i=1

〈vi, h〉vi,

n
∑

j=1

〈vj , h〉vj

〉

= σn‖h‖
2. (2.3)

Let c, δ > 0 be as in part (ii). Then (2.3) implies that for all h such that ‖h‖ <
min(δ, σn/2c) we have

f(x∗ + h) = f(x∗) +
1

2
hTD2f(x∗)h + O(‖h‖3)

(2.3)

≥ f(x∗) +
1

2
‖h‖2σn − c‖h‖3

≥ f(x∗) +
1

2
‖h‖2σn − c

σn

2c
‖h‖2 = f(x∗),

which shows that x∗ is a local minimiser of f .

3. Line-Search Descent Methods. The optimality conditions we just derived
play an important role in the construction of algorithms: Solving the simultaneous
system of nonlinear equations

∇f(x) = 0

by an iterative procedure generating a sequence of points (xk)N, if we can assure that
f(xk) decreases in each iteration,

f(xk+1) ≤ f(xk) ∀ k,

then in practice (xk)N can only converge to a local minimiser x∗ and

‖∇f(x∗)‖ < ε

can be used as a stopping criterion. Thus, solving unconstrained optimisation prob-
lems is closely related to the problem of solving simultaneous equations with the
added feature that progress can be controlled by monitoring a naturally defined merit
function (i.e., one asks ”does f decrease?”).

Most competitive algorithms for unconstrained minimisation are based on this
idea. There are two main families of such methods: line-search methods and trust
region methods. We start with a description of the former.

Example 3.1 (Steepest descent without line searches). A simple method is
defined as follows: starting from some x0 ∈ R

n, compute a sequence of intermediate
solutions (xk)N as follows,

xk+1 = xk −∇f(xk).

4

The method is motivated by the fact that −∇f(xk) is the direction in which f
decreases fastest when moving away from xk. But is it a descent method? The first
order Taylor approximation of f shows that f(xk−α∇f(xk)) ≤ f(xk) for small α > 0.
However, it is not necessarily the case that f(xk+1) ≤ f(xk), as the step −∇f(xk)
can be too far. To make this a true descent method, we have to use line-searches: in
each iteration we have to find αk > 0 such that

f(xk − αk∇f(xk)) < f(xk),

and then we can set

xk+1 = xk − αk∇f(xk).

A word of warning: although this method works in principle, it is too primitive to
produce any good results in practice! We will later learn why. For now we set out to
generalise this example.

Algorithm 3.2 (Descent method).
S0 Choose a starting point x0 ∈ R

n and a tolerance parameter ε > 0. Set k = 0.
S1 If ‖∇f(xk)‖ ≤ ε then stop and output xk as an approximate local minimiser.
S2 Otherwise choose a search direction dk ∈ R

n such that 〈∇f(xk), dk〉 < 0.
S3 Choose a step size αk > 0 such that f(xk + αkdk) < f(xk).
S4 Set xk+1 := xk + αkdk, replace k by k + 1, and go back to S1.

Below we will see that the minimal assumption we need to make for this algorithm
to work is f ∈ C1 with Lipschitz continuous gradient.

The generality of Algorithm 3.2 leaves flexibility both in the choice of the step
length αk and the search direction dk. In the remainder of this lecture we discuss the
step length selection and treat the choice of good search directions in the next few
lectures.

3.1. Step Length Selection. The conceptually simplest method of choosing
αk are exact line searches, defined by

αk := inf{α ≥ 0 : φ′(α) = 0},

where φ(α) = f(xk + αdk). That is to say, the point xk + αkdk is the first stationary
point of f encountered along the half line {xk + αdk : α ≥ 0}. Note that if {α ≥ 0 :
φ′(α) = 0} = ∅, as is the case for example when φ(α) = − lnα, then {α ≥ 0 : φ′(α) =
0} = ∅, and hence αk := inf ∅ = +∞ corresponds to an infinitely long step which is
still sensible.

Exact line searches are mainly a theoretical tool in the convergence analysis of
algorithms. In practice, they are computationally too expensive. We will now derive
step length computations that are equally good choices for the purposes of Algorithm
3.2 and much cheaper to compute.

Definition 3.3. We say that αk satisfies the Wolfe conditions if

φ(αk) ≤ φ(0) + c1αkφ′(0), (3.1)

φ′(αk) ≥ c2φ
′(0), (3.2)

5

where 0 < c1 < 1/2 and c1 < c2 < 1 are constants, and where φ is the function
φ(α) = f(xk + αdk).

The Wolfe conditions represent a sensible choice of step length: Condition (3.1)
ensures that the actual objective value decrease f(xk)− f(xk + αkdk) equals at least
a fixed fraction of the change −αk〈∇f(xk), dk〉 predicted by the first order Taylor
approximation

f(xk + αkdk) ≈ f(xk) + αk〈∇f(xk), dk〉.

The restriction c1 ≤ 1/2 is desirable because this allows αk to take the value of the
exact minimiser when φ(α) is a convex quadratic function. Condition (3.2) on the
other hand guarantees that the step size is not zero, because 〈∇f(xk + αkdk), dk〉 is
substantially larger than 〈∇f(xk), dk〉 (which is a negative number).

Proposition 3.4. If f ∈ C1(Rn) is bounded below on the half-line {xk + αdk :
α ≥ 0} then there exists a step length αk ∈ (0,∞) that satisfies the Wolfe conditions.

Proof. Since the mapping x 7→ ∇f(x) is continuous and 〈∇f(x∗), dk〉 < 0, there
exists a δ > 0 such that

φ′(α) = 〈∇f(x∗ + αdk), dk〉 ≤ c1〈∇f(x∗), dk〉

for all α ∈ [0, δ]. But then

φ(α) = φ(0) +

∫ α

0

φ′(t)dt ≤ φ(0) + c1αφ′(0).

This shows that the first Wolfe condition (3.1) is satisfied for any αk ∈ [0, δ].
Note that if (3.1) is true for all α ∈ [0,∞) then f is unbounded below and

limα→∞ φ(α) = −∞. That is, in this case there exists no global minimiser, and this
is revealed by an infinite step length. However, since in the statement of the theorem
we assumed that φ is bounded below,

ᾱ := sup{α : (3.1) holds for αk = α}

is a well-defined number.
Note that then (3.1) holds for αk = ᾱ. Moreover, φ′(ᾱ) ≥ c1φ

′(0), for otherwise

φ(ᾱ + t) = φ(ᾱ) + tφ′(ᾱ) + O(t2) < φ(ᾱ) + tc1φ
′(0) ≤ φ(0) + c1(ᾱ + t)φ′(0)

for all t > 0 sufficiently small, contradicting the choice of ᾱ. But since φ′(0) < 0 and
0 < c1 < c2, we have

φ′(ᾱ) ≥ c1φ
′(0) > c2φ

′(0).

Therefore, (3.2) holds true for αk = ᾱ too. Thus, αk = ᾱ is a valid choice for the step
size.

To turn the Wolfe conditions into a practical tool that can be used as an element
of an algorithm, we need to devise a method for computing a step length αk that sat-
isfies the Wolfe conditions under the assumptions of Proposition 3.4. The following
algorithm does the job:

6

Algorithm 3.5 (Bisection method for step size).
S0 Choose α > 0 and set αlow = αhigh = 0.
S1 If α satisfies (3.1) (that is, if α is long enough) then goto S3.
S2 Else (if α does not satisfy (3.1)) make the replacements αhigh ← α and

α← (αlow + αhigh)/2, and then goto S1.
S3 If α satisfies (3.2) (that is, α now satisfies both Wolfe conditions) output

αk = α and stop.
S4 Otherwise (if α does not satisfy (3.2)), make the replacements αlow ← α and

α←

{

2αlow if αhigh = 0,
1
2 (αlow + αhigh) if αhigh > 0,

and then go back to S1.

Proposition 3.6. Under the assumptions of Proposition 3.4, Algorithm 3.5 ter-
minates in finite time and outputs a choice of αk that satisfies both Wolfe conditions.

Proof. Note that the two sets

W1 := {α ≥ 0 : (3.1) holds},

W2 := {α ≥ 0 : (3.2) holds}

are closed subsets of R+. Moreover,

φ(α) = φ(0) +

∫ α

0

φ′(τ)dτ < φ(0) +

∫ α

0

c1φ
′(0)dτ

for all α sufficiently small, because φ′ is continuous and c1 < 1, showing that there

exists δ1 > 0 such that [0, δ1] ⊂W1. Let α > 0, (α
[i]
low)N ⊂W1 and (α

[i]
high)N ⊂W c

1 be
such that

α
[i]
low < α ∀i ∈ N, α

[i]
low

i→∞
−→ α,

α
[i]
high > α ∀i ∈ N, α

[i]
high

i→∞
−→ α.

(3.3)

We claim that this implies α ∈ W ◦
2 (the topological interior of W2). In fact, suppose

to the contrary that α ∈ W c
2 , and hence that φ′(α) ≤ c2φ

′(0). Then there exists a
value δ2 > 0 such that

φ′(α + τ) < c1φ
′(0) ∀τ ∈ [0, δ2],

because φ′ is continuous and c2 < c1. Therefore,

φ(α + τ) = φ(α) +

∫ α+τ

α

φ′(θ)dθ < φ(0) + c1(α + τ)φ′(0)

for all τ ∈ [0, δ2]. Since α
[i]
high converges to α from the right there exists an index j large

enough so that α
[j]
high ∈ [α, α + δ2], contradicting the assumption that α

[j]
high ∈ W c

1 .
Therefore, it is indeed the case that α ∈W ◦

2 .
Let us now start analysing the algorithm. Note that we only need to prove that

the algorithm terminates in finite time, because the termination criterion is set such
that if the algorithm terminates, then αk satisfies both Wolfe conditions.

7

• We say that the algorithm starts iteration i when it visits step S1 for the i-th

time, starting with iteration i = 0. Let α
[i]
low, α

[i]
high and α[i] denote the values

of αlow, αhigh and α respectively just before the algorithm enters iteration i.

• Note that it is impossible that α
[i]
low = 0 for all i, because in that case α[i] =

2−iα[0], and ultimately α[i] ∈ [0, δ1] ⊂W1 and αlow is updated to α[i] > 0.

• (α
[i]
low)N is an increasing sequence in W1 such that α

[i]
low < α[i] for all i. In

fact, these properties hold true at i = 0, and since αlow can only be updated

in step S4 it will increase to the strictly larger value α
[i+1]
low = α[i] and α[i+1]

takes on a strictly larger value than α[i] in the same step.

• Initially, α
[i]
high = 0 for a few iterations, but once it takes on a value α[i0] > 0

in some iteration i0, then this can only happen in step S2. From then on
(αi

high){i∈N:i≥i0} is a decreasing sequence of values from W c
1 , because αhigh

is only updated in step S2 to a value of α that is strictly smaller than αhigh

and not in W1, and α itself is updated to a strictly smaller value.

• Overall, there are only two possible scenarios: either α
[i]
high = 0 for all i,

and then α
[i]
low = α[0]2i−1 for all i, in which case the algorithm detects that

f is unbounded below in the direction dk, a situation we excluded in the
assumptions of Proposition 3.4. It is thus the second scenario that takes place,

which is that there exists an index i0 ∈ N such that α
[i0]
high > 0, and from then

on α[i] = (α
[i]
high + α

[i]
low)/2, (α

[i]
low)N is increasing, (α

[i]
high)N is decreasing, and

the interval [α
[i]
low, α

[i]
high] is halved in length in every iteration. This shows

that α
[i]
low converges to a point α from within W1 and α

[i]
high converges to

the same point from within W c
1 . By the arguments above, α ∈ W1 ∩ W ◦

2 .

Therefore, α
[i]
low ∈ W1 ∩ W2 for i sufficiently large, and the algorithm will

detect this and terminate with this value.

3.2. Convergence of Descent Methods. It is now possible to give a fairly
general convergence theorem for Algorithm 3.2 as long as the step lengths satisfy the
Wolfe conditions. We prepare the proof through a lemma that gives a useful bound
on the amount of decrease in the objective function that is achieved in every iteration:

Lemma 3.7. Let Algorithm 3.2 be applied to a C1 function f with Λ-Lipschitz
continuous gradient and assume that the step length αk satisfies the Wolfe conditions
(3.1) and (3.2). Then

f(xk+1) ≤ f(xk)− c1(1− c2)
(cos2 θk)‖∇f(xk)‖2

Λ
,

where θk is the angle between dk and −∇f(xk), and where c1, c2 are the constants
from Definition 3.3.

Proof. The second Wolfe condition implies

〈∇f(xk + αkdk), dk〉 − 〈∇f(xk), dk〉 = φ′(αk)− φ′(0) ≥ (c2 − 1)φ′(0)

= (1− c2) (−〈∇f(xk), dk〉) .

8

The Cauchy–Schwartz inequality and the Lipschitz condition imply that the left hand
side of this expression is bounded above by αkΛ‖dk‖2. Therefore,

αk ≥ (1− c2) ·
−〈∇f(xk), dk〉

Λ‖dk‖2
.

Since 〈∇f(xk), dk〉 < 0, Condition (3.1) yields

f(xk+1) = φ(αk) ≤ φ(0) + c1αkφ′(0) ≤ f(xk)− c1(1− c2)

(

〈∇f(xk), dk〉
)2

Λ‖dk‖2
,

and since

〈∇f(xk), dk〉 = − cos θk‖dk‖ · ‖∇f(xk)‖,

this proves the result.

The convergence of the descent method is characterised by the following result
which shows that either ∇f(xk) converges to the zero vector as k → ∞, that is,
asymptotically xk becomes approximately a stationary point, or else the angle θk

converges to π/2, which is to say that the search direction asymptotically looses the
property of being a descent direction. Whenever the search direction is designed so
that θk remains bounded away from π/2 the former situation occurs, and the conver-
gence to a stationary point is guaranteed.

Theorem 3.8. Suppose f ∈ C1(Rn) has Lipschitz continuous gradients on R
n

and is bounded below. When Algorithm 3.2 is applied with step lengths αk that satisfy
the Wolfe conditions then

∞
∑

k=0

(cos2 θk)‖∇f(xk)‖2 <∞,

where θk is defined as in Lemma 3.7.

Proof. Let b be a lower bound for f , that is f(x) ≥ b for all x ∈ R
n. Lemma 3.7

shows that

f(x0)− b ≥ f(x0)− f(xk+1)

≥ f(x0)− f(xk) + c1(1− c2)
(cos2 θk)‖∇f(xk)‖2

Λ
≥ . . .

≥ f(x0)− f(x0) +
c1(1− c2)

Λ

j
∑

k=0

(cos2 θk)‖∇f(xk)‖2.

Therefore,

0 ≤

j
∑

k=0

(cos2 θk)‖∇f(xk)‖2 ≤

(

f(x0)− b
)

Λ

c1(1− c2)
,

and since this is true for all j, this proves the result.

9

Theorem 3.8 is valid under the assumption that the objective function is bounded
below. It is interesting to note that when this is not the case, the algorithm fails to ter-
minate in finite time but produces a sequence (xk)N such that limk→∞ f(xk) = −∞,
which is a perfectly sensible and desireable behaviour under the circumstances.

10

