
SECTION C: CONTINUOUS OPTIMISATION

LECTURE 3: STEEPEST DESCENT, GRADIENT SEARCH AND

NEWTON’S METHOD

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2005, DR RAPHAEL HAUSER

1. Naive Methods. In Lecture 2 we discussed the fairly general framework of
line search descent methods, and we discussed the issue of step size selection in some
detail. But the step size selection is only one aspect in which different algorithms
may differ from one another. Another important aspect is the choice of the search
direction dk at the intermediate solution xk.

Theorem 3.8 of Lecture 2 guarantees that a line-search descent method converges
as long as the angle θk between dk and −∇f(xk) is strictly smaller than and bounded
away from π/2. This is the only requirement on dk we identified so far. We will
spend the next few lectures to derive and discuss specific choices search directions
that satisfy this requirement.

1.1. The Steepest Descent Method. The most elementary descent method
is the steepest descent method in which the search direction dk is chosen as −∇f(xk).
Since this guarantees that θk ≡ 0, we obtain the following convergence result as an
immediate corollary of Theorem 3.8 from Lecture 2:

Theorem 1.1. Suppose f ∈ C1(Rn) has Lipschitz continuous gradients on R
n

and is bounded below. Then the steepest descent algorithm combined with step lengths
that satisfy the Wolfe conditions converges globally to a stationary point of the objec-
tive function.

The steepest descent method seems appealing, since −∇f(xk) is the direction
in which the objective function locally decreases at the fastest rate. Furthermore,
−∇f(xk) is usually cheap to compute: using automatic differentiation software, one
can easily turn a computer progamme that computes function values f(x) into one
that computes directional derivatives of f at approximately the same cost, so that
computing ∇f(xk takes about n times as much time as evaluating f(xk).

Unfortunately, despite its intuitive appeal, the steepest descent method has seri-
ous drawbacks, as it can have excruciatingly slow convergence rates (see Problem 3 of
Problem Set 2), and it can be unreliable because roundoff errors cause it to oscillate
even for simple convex quadratic objective functions f(x) = a + cTx + (1/2)xTBx,
where a ∈ R, c ∈ R

n and B is a positive definite symmetric matrix. The steepest de-
scent method behaves so badly in practice that some regard it as the ultimate Mickey
Mouse method of optimisation!

1.2. The Coordinate-Search Method. Another naive method that converges
even more slowly than the steepest descent method is coordinate-search in which the
search direction dk is chosen to coincide with one of the coordinate axes in each
iteration. Many variants exist, the most popular being to choose dk = ei where ei is
the i-th coordinate vector and i = 1 + k mod n.

Note that evaluating this choice of dk is even cheaper than computing the steepest-
descent direction. Furthermore, a convergence result for the coordinate-search method
derives from Theorem 3.8 of Lecture 2 in a similar way as Theorem 1.1.

1

Despite their problems with convergence, the steepest-descent and coordinate-
search methods can be useful in situations where other methods are computationally
too expensive to apply: the low cost per iteration of is a virtue of both algorithms.

2. Newton’s Method. We will now jump from the discussion of the cheapest-
to-compute and slowest-to-converge line-search methods directly to discussing the
most-expensive-to-compute and fastest-to-converge method: the Newton–Raphson
method, which sets the benchmark for convergence speed, both in theory and in
practice. All other search-directions we discuss later can be seen as attempts to strike
a balance between the cost per iteration and the number of iterations needed until
convergence, with the methods of Section 1 on one end of the spectrum, and the
Newton-Raphson method at the other.

2.1. The Newton-Raphson Method for Zero-Finding. Let us first consider
how to find zeros of a differentiable univariate function g, that is, suppose we want
to find x∗ ∈ R such that g(x∗) = 0. If we are given an approximation xk of x∗ such
that g′(xk) 6= 0, then the linear function

ϕ : x 7→ g(xk) + g′(xk)(x − xk)

has the unique zero xk+1 = xk − g(xk)/g′(xk), see Figure 2.1. But ϕ is the first order

PSfrag replacements

x

g(x)

x∗

xk

xk+1

xk+2

ϕ

Fig. 2.1. Newton’s method for univariate zero-finding

Taylor approximation of g around xk , which locally approximates g well. Therefore,
it is reasonable to expect that under benevolent conditions xk+1 should be an even
better approximation of x∗ than xk, and that (xk)N converges to x∗ if the same process
is applied in an iterative fashion. This is the Newton-Raphson method for zero-solving.
The “benevolent” conditions we need are simply that g′(x∗) 6= 0 and that xk lies in
sufficient proximity to x∗. This will follow from Theorem 2.6 below.

The multivariate version of the Newton-Raphson method is a direct generalisa-
tion: we now seek a root (or zero) of a multivariate function g : R

n → R
n. Given an

approximate root xk ∈ R
n, we find the next iterate xk+1 as the zero of the first-order

Taylor approximation of g around xk , or in other words, as the root of the linear
system of equations g(xk) + Jg(xk)(x− xk) = 0, where Jg(x) =

[

∂gi

∂xj

]

is the Jacobian

of g at x. When Jg(x) is nonsingular, this linear system has the unique solution

xk+1 = xk − Jg(xk)−1g(xk).

Note that if g ∈ C1 and det J(x∗) 6= 0 then Jg(x) is nonsingular for all xk in a
neighbourhood of x∗, and xk+1 is well defined.

2



Note that in this approach a difficult nonlinear problem is replaced by a sequence
of easy linear problems. Much of numerical analysis follows similar approaches.

Example 2.1. Let A ∈ R
m×n be a m × n matrix with full row rank (that is,

linearly independent row vectors). Let b ∈ R
m, c ∈ R

n, µ ∈ R+, and let e ∈ R
n be the

vector of all ones

e =
[

1 ... 1

]T
.

At the heart of interior-point methods for linear programming lies the solution of the
nonlinear system of equations

Ax = b (2.1)

ATy + s = c (2.2)

XSe = µe (2.3)

x, s > 0, (2.4)

where x, s ∈ R
n, y ∈ R

m, X = diag(x) and S = diag(s) are the diagonal matrices
with x and s on their diagonals, and where x, s > 0 means that both vectors have to
be component-wise strictly positive.

It can be shown that the system (2.1)-(2.4) has a unique solution (x∗, y∗, s∗).
Given a current approximate solution (x, y, s) such that x, s > 0, we can compute a
Newton step (∆x, ∆y, ∆s) for the unconstrained system (2.1)-(2.3) which is obtained
by solving the linear system of equations

A∆x = b − Ax

AT∆y + ∆s = c − ATy − s

S∆x + X∆s = µe − XSe.

In order to guarantee that (2.4) continues to be satisfied, we use (∆x, ∆y, ∆s) as
a search-direction and determine an updated approximate solution (x+, y+, s+) as
follows:

α∗ = sup{α > 0 : x + α∆x > 0, s + α∆s > 0},

(x+, y+, s+) = (x, y, s) + min(1, 0.99× α∗) × (∆x, ∆y, ∆s).

It can be shown that the resulting sequence of intermediate solutions converges very
efficiently to (x∗, y∗, s∗).

2.2. Newton’s Method for Unconstrained Minimisation. Let us now go
back to the unconstrained optimisation problem

min
x∈Rn

f(x). (2.5)

The first order necessary optimality condition of Theorem 2.1 (i) of Lecture 2 tells us
that (2.5) can be replaced by the multivariate root-finding problem

∇f(x) = 0. (2.6)

When we apply the Newton-Raphson method to the zero-finding problem (2.6), we
obtain the updating rule

xk+1 = xk −
(

D2f(xk)
)−1

∇f(xk), (2.7)

3

which is well-defined as long as D2f(xk) is nonsingular. We call

nf (xk) := −
(

D2f(xk)
)−1

∇f(xk)

the Newton-step.

Algorithm 2.2 (Newton-Raphson method). Let f ∈ C2(Rn) and let x0 be an
initial approximation of a local minimiser x∗ of f . The Newton-Raphson method for
solving (2.5) consists in computing the sequence of points (xk)N defined by

xk+1 = xk + nf (xk).

This is an excellent method for minimising convex functions, since D2f(xk) � 0
implies

〈nf (xk),∇f(xk)〉 = −∇f(xk)TD2f(xk)∇f(xk) < 0,

that is, nf (xk) is a descent direction. Furthermore, Theorem 2.6 below shows that
the Newton-Raphson method converges to a stationary point x∗ Q-quadratically, and
since the local minimisers of a convex function are exactly characterised by the opti-
mality condition ∇f(x∗) = 0 (see Lecture 1), x∗ must be a local minimiser.

Regrettably, when f is not convex, the Newton-Raphson method is not guaran-
teed to converge to local minimiser. Cycling can occur (i.e., xk+j = xk for some
k, j ∈ N) but is unlikely in practice, but more importantly, the method can converge
to a local maximiser or a saddle point of f .

Example 2.3. Consider the univariate objective function f(x) = −x2. In a
neighbourhood of the local maximiser x∗ = 0, the Newton-Raphson method is attracted
to x∗. In particular, if xk = 1, then dk = −f ′′(1)−1f ′(1) = −(−2)/(−2) = −1 is a
direction of ascent rather than descent.

This phenomenon is not surprising, as the algorithm is designed as a zero-finding
method for ∇f(x) = 0, and as nf (xk) may fail to be a descent direction when D2f(xk)
is not positive definite.

Two obvious ways to overcome these drawbacks are

i) either to use the Newton-Raphson method only in the final phase of an algo-
rithm that otherwise consists of a line-search descent method (this is moti-
vated by the fact that in a neighbourhood of a local minimiser f looks convex,
and often strictly convex),

ii) or to use nf (xk) as a search-direction which might have to be reversed if it
fails to be a descent-direction.

We formalise the second approach in the following algorithm:

Algorithm 2.4 (Damped Newton method). Let f ∈ C2(Rn) and x0 an initial
approximation of a local minimiser of f . The damped Newton method uses

dk :=

{

nf (xk) if 〈nf (xk),∇f(xk)〉 < 0,

−nf (xk) otherwise

4



as a search-direction and computes a sequence (xk)N via the line-search descent algo-
rithm of Lecture 2 (Algorithm 3.2).

In order for this algorithm to pick up the superb convergence rates of the Newton-
Raphson method, the line-search step lengths αk have to approach the value 1 asymp-
totically, corresponding to full Newton-Raphson steps.

The next example shows that computing a Newton-Raphson step is not always
trivial, because thinking of the problem space as a Euclidean space may not be that
straight-forward:

Example 2.5. Let us consider the vector space Sn ⊂ R
n×n of n × n symmetric

matrices. We endow Sn with the Euclidean inner product (X, S) 7→ 〈X, S〉 which is
obtained by multiplying the matrices X and S component-wise and taking the sum of
these products. A more convenient and equivalent way of thinking about this inner
product is given by the identity

〈X, S〉 = tr
(

XTS),

where tr(A) = a11 + · · ·+ann denotes the trace of an n×n matrix A. We write X � 0
if X ∈ Sn is positive definite. Then

Sn
++ :=

{

X ∈ Sn : X � 0
}

is a convex open set in Sn, and the log-barrier function

f : Sn
++ → R,

X 7→ − ln det X

is well-defined. How can one compute a Newton-Raphson update for this objective
function?

At first we need to compute gradient and Hessian of f , which is nontrivial. The
function f is infinitely differentiable on Sn

++, since ln is C∞ on (0,∞), and because
det X is a polynomial in the components of X and takes values only in (0,∞) when
X � 0. Note that

det(I + tY ) = 1 + t(tr Y ) + O(t2). (2.8)

This is because in the development of the determinant as a sum of monomials, when-
ever there appears a nondiagonal entry of I + tY in a monomial there is at least
one other nondiagonal entry that appears in the same monomial and hence all such
monomials are of order O(t2). Moreover,

det
(

I + t Diag(Y )
)

= 1 + t(tr Y ),

where Diag(Y ) is the diagonal matrix obtained by setting all off-diagonal elements of
Y to zero. Substituting (2.8) into the first order Taylor development of the function
ln(1 + x) = x + O(x2) we obtain

ln det(I + tY ) = t tr Y + O(t2).

Therefore,

d

dt
|t=0 ln det(I + tY ) = lim

t→0

1

t
(ln det(I + tY ) − ln det I)

= lim
t→0

(tr Y + O(t)) = tr Y = tr(ITY ),

5

which shows that ∇f(I) = I . It follows that

d

dt
|t=0 ln det(X + tY ) = lim

t→0

1

t
(ln det(X + tY ) − ln det X)

= lim
t→0

1

t

(

ln
(

det(X−1) det(X + tY )
))

= lim
t→0

1

t

(

ln det(I + tX−1Y )
)

= tr(X−1Y ),

and this shows that ∇f(X) = X−T = X−1 for all X ∈ Sn
++. In order to compute

D2f it suffices to determine the directional derivatives of ∇f(X). Arguing similarly
as above, one obtains

lim
t→0

1

t
(∇f(X + tS) −∇f(X)) = X−1SX−1.

Therefore, for all 0 6= S ∈ Sn we have

D2f(X)
(

S, S
)

= tr
(

X−1SX−1S
)

= tr
(

(X−1/2SX−1/2)T(X−1/2SX−1/2)
)

= ‖X−1/2SX−1/2‖2 > 0,

where X1/2 is the unique positive definite symmetric matrix such that X1/2X1/2 = X
(see problem set). This proves that D2f(X) is positive definite for all X ∈ Sn

++, and
we know from Lecture 1 that this implies that f is strictly convex on Sn

++. The
Newton equation for the update matrix D is

D2f(X)[D] = −∇f(X).

The formulas derived above allow us now to rewrite this equation as

X−1DX−1 = −X−1.

This yields D = −X . Note that −∇f(X) = −X−1 is the steepest-descent direction.

Let us now analyse the convergence speed of the Newton-Raphson method:

Theorem 2.6. Let f ∈ C2(Rn, R) have Λ-Lipschitz continuous Hessian and
let x∗ ∈ R

n be a stationary point of f . If D2f(x∗) is nonsingular then there exists
a neighbourhood Bρ(x

∗) of x∗ such that choosing x0 ∈ Bρ(x
∗) as a starting point

and applying the Newton-Raphson method generates a sequence (xk)N that is is well-
defined, lies in Bρ(x

∗) and converges to x∗ Q-quadratically.

Proof. Since D2f(x∗) is nonsingular and D2f : D → R
n×n is a continuous map-

ping, there exists a radius ρ̄ > 0 such that D2f(x) is nonsingular for all x ∈ Bρ̄(x
∗).

Moreover, X 7→ X−1 is a continuous mapping on Gln(R) (the set of nonsingular n×n
matrices). Thus, we may choose ρ̄ sufficiently small so that

‖(D2f(x))−1‖ ≤ 2‖(D2f(x∗))−1‖ =: β, (2.9)

where ‖ · ‖ denotes the canonical operator norm. Note that the choice of ρ̄ guarantees
that (2.7) is well-defined for ‖xk − x∗‖ < ρ̄. Subtracting x∗ from both sides of (2.7)
yields

(xk+1 − x∗) = (xk − x∗) − (D2f(xk))−1∇f(xk). (2.10)

6



Using ∇f(x∗) = 0 we find that

∇f(xk) = ∇f(xk) −∇f(x∗)

=

∫ 1

t=0

D2f(tx∗ + (1 − t)xk)(xk − x∗)dt

Substituting this expression into (2.10), we obtain

(xk+1 − x∗) =
(

D2f(xk)
)−1

S (xk − x∗), (2.11)

where

S = D2f(xk) −

∫ 1

t=0

D2f(tx∗ + (1 − t)xk)dt

=

∫ 1

t=0

D2f(xk) − D2f(tx∗ + (1 − t)xk)dt.

Taking norms on both sides of (2.11), we obtain

‖xk+1 − x∗‖ ≤ ‖(D2f(xk))−1‖ × ‖S‖ × ‖xk − x∗‖. (2.12)

The Lipschitz continuity of D2f implies that

‖S‖ ≤

∫ 1

t=0

‖D2f(xk) − D2f(tx∗ + (1 − t)xk)‖dt

≤

∫ 1

t=0

Λt‖xk − x∗‖dt =
Λ

2
‖xk − x∗‖.

Using this bound and (2.9) in (2.12) we find

‖xk+1 − x∗‖ ≤
βΛ

2
‖xk − x∗‖2. (2.13)

Finally, for ρ := min(ρ̄, 2(βΛ)−1), (2.13) shows that

xk ∈ Bρ(x
∗) ⇒ xk ∈ Bρ(x

∗),

so that the entire sequence (xk)N is well defined as long as x0 ∈ Bρ(x
∗).

Theorem 2.6 shows that the Newton-Raphson method produces an output se-
quence (xk)N in which every xk+1 approximates x∗ with roughly twice as many cor-
rect digits as xk, as long as the process is started within Bρ(x

∗). In applications it
is a drawback that the radius ρ depends on the Hessian D2f(x∗), which is of course
unknown because x∗ is unknown. The ball Bρ(x

∗) is called the domain of quadratic
attraction of x∗. During the 1990’s, interesting new theories have been developed (Nes-
terov & Nemirovskii’s theory of self–concordant functions, Smale’s α-theory) which
show that for certain classes of objective functions there exist mathematical criteria
which make it possible to detect that xk lies in the domain of quadratic attraction
without knowing the location of x∗. The ensuing interior-point and homotopy meth-
ods based on these principles have revolutionised the way in which many important
optimisation problems are solved in practice, including linear programming!

7

The Newton-Raphson method plays indeed a uniquely important role as a basic
element in many practical optimisation algorithms. However, its usefulness has limi-
tations in situations where computing the Hessian D2f and solving the linear system
D2f(xk)dk = −∇f(xk) to determine the Newton step is computationally too expen-
sive. In some applications the problem dimension is so large that it is not possible to
keep all the entries of D2f in the main memory of a computer.

8


