
SECTION: CONTINUOUS OPTIMISATION

LECTURE 4: QUASI-NEWTON METHODS

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2005, DR RAPHAEL HAUSER

1. The Quasi-Newton Idea. In this lecture we will discuss unconstrained min-
imisation methods that form a tradeoff between the advantages and disadvantages of
the steepest descent and Newton-Raphson methods: we aim at methods that con-
verge faster than steepest descent but have a lower operation count per iteration than
Newton-Raphson. The family of algorithms we will consider are called quasi-Newton
methods, as justified by the following motivation.

In Problem 2 of this week’s exercises you will learn that an alternative derivation
of the Newton–Raphson method is via the replacement of the minimisation problem
minx∈Rn f(x) by minx∈Rn q(x), where q(x) is the second order Taylor approximation
of f around xk , that is,

q(x) = f(xk) + 〈∇f(xk), x− xk〉+
1

2
(x− xk)TD2f(xk)(x− xk).

If D2f(xk) is positive definite, then the minimisation of q(x) yields

xk+1 = xk −
(

D2f(xk)
)−1
∇f(xk)

as the optimal solution, and this is taken to be the next iterate in the Newton-Raphson
process.

If instead of the Hessian D2f(xk) we use an approximation Bk ≈ D2f(xk), we
can generalise this idea and consider the minimisation problem minx∈Rn p(x), where
p(x) is a quadratic model

p(x) = f(xk) + 〈∇f(xk), x− xk〉+
1

2
(x− xk)TBk(x− xk)

of the objective function f . The minimisation of p(x) yields the iterate

x∗ = xk −B−1

k ∇f(xk).

This update is well-defined when Bk is nonsingular, and in particular when Bk is
positive definite symmetric. Since Bk is only an approximation of D2f(xk), the
update dk = x∗ − xk is used as a search direction rather than an exact update. A
line-search then yields a new Quasi-Newton iterate

xk+1 = xk + αkdk.

Suppose we are given a rule for cheaply computing Bk+1 as a function of the
previously computed gradients ∇f(x0), . . . ,∇f(xk+1), or as a function of the previ-
ously computed quantities Bk,∇f(xk) and ∇f(xk+1). Then a generic quasi Newton
algorithm proceeds as follows:

Algorithm 1.1 (Generic quasi-Newton).

S0 Choose a starting point x0 ∈ R
n, a nonsingular B0 ∈ Sn (often the choice is

B0 = I), and a termination tolerance ε > 0. Set k = 0.

1

S1 If ‖∇f(xk)‖ ≤ ε then stop and output xk as an approximate local minimiser
of f . Else go to S2.

S2 Compute the quasi-Newton search direction dk = −B−1

k ∇f(xk).

S3 Perform a practical line-search for the minimisation of φ(α) = f(xk + αdk):
find a step length αk that satisfies the Wolfe conditions and compute the new
iterate xk+1 = xk + αkdk.

S4 Compute the new approximate Hessian Bk+1 according to the specified rule.

S5 Replace k by k + 1 and go to S1.

1.1. A Wish List. To turn the generic procedure outlined in Algorithm 1.1 into
a practical algorithm, we have to specify how to update the approximate Hessian Bk.
Many variants of such updating rules have been proposed, and we will discuss the two
most widely used choices in Sections 2 and 3.

But before doing that, we draw up a “wish list” of properties we would like to find
in Bk. These properties serve as a motivation for almost all quasi-Newton methods,
not merely the ones discussed in Sections 2 and 3.

P1: Bk should be nonsingular, so that S2 is well-defined.

P2: Bk should be such that dk is a descent direction, so that S3 is well-defined.

P3: Bk should be symmetric, because Hessians are symmetric matrices.

Note that properties P1–P3 can be satisfied for example by requiring that Bk be
positive definite symmetric, as P1 and P3 are then trivially true, and P2 follows from

〈∇f(xk), dk〉 = −∇f(xk)TB−1

k ∇f(xk) < 0,

unless ∇f(xk) = 0, in which case Algorithm 1.1 already stopped and the line-search
is unnecessary.

One might argue that a positive definite matrix Bk is a poor choice as a Hes-
sian approximation when D2f(xk) has at least one negative eigenvalue. However,
such iterates xk are not near a local minimiser, and at such points one is primarily
concerned with finding a descent direction, and dk is then a valid choice for any Bk

positive definite. This avoids that the quasi-Newton method gets attracted to any
point but a local minimiser.

P4: Bk+1 should be computable by “recycling” the quantities

∇f(xk+1),∇f(xk), . . . ,∇f(x0), dk, αk

which have to be computed anyway.

In order to meet this requirement while computing a Bk+1 that is a credible
Hessian approximation, it is useful to observe that the gradient change

γk := ∇f(xk+1)−∇f(xk)

yields information about the Hessian change D2f(xk+1) − D2f(xk): let us write
δk := αkdk for the update chosen by Algorithm 1.1. Recall that the search direction

2



dk computed in S2 is motivated by the fact that the gradient change predicted by the
quadratic model

p(x) = f(xk) + 〈∇f(xk), x− xk〉+
1

2
(x− xk)TBk(x− xk)

is

∇f(xk + dk)−∇f(xk) ≈ ∇p(xk + dk)−∇p(xk)

= ∇f(xk) + Bkdk −∇f(xk)

= −∇f(xk). (1.1)

In other words, it is predicted that xk + dk is exactly a stationary point of f .
But of course, p is only a locally valid model of f , and since the new iterate xk+1

is obtained via a line search, the true gradient change γk = ∇f(xk+1) − ∇f(xk) is
different from the prediction (1.1). A clever way to incorporate γk into the Hessian
approximations is therefore to choose Bk+1 so that the quadratic model

h(x) = f(xk) + 〈∇f(xk), (x − xk)〉+
1

2
(x − xk)Bk+1(x− x)

would have correctly predicted the observed gradient change:

γk = ∇f(xk+1)−∇f(xk) = ∇h(xk+1)−∇h(xk) = ∇f(xk) + Bk+1δk −∇f(xk).

In other words, Bk+1 should be chosen such that

Bk+1δk = γk (1.2)

holds true. (1.2) is called the secant condition.

P5: Bk+1 should be close to Bk in a well-defined sense, so that Bk can converge
to D2f(x∗) and dk is allowed to become the Newton-Raphson step asymptot-
ically.

A straightforward idea to define a notion of closeness is by use of a matrix norm:
d(Bk+1, Bk) = ‖Bk+1 − Bk‖. However, it is often more useful to characterise close-
ness by keeping the rank of Bk+1 −Bk as low as possible. This choice automatically
guarantees that the last property on our wish list is satisfied too:

P6: The choice of Bk should be such that the overall work per iteration is at most
of order O(n2), to gain a substantial speed-up over the O(n3) computer oper-
ations needed to perform a Newton-Raphson step.

2. Symmetric Rank 1 Updates. Let us now describe a simple method that
satisfies some but not all of the properties P1–P6. P3 and P5 can be satisfied by
requiring that Bk+1 is a rank-1 update of Bk, that is, we want to select some vector
u and set

Bk+1 = Bk + uuT, (2.1)

where the uuT is the usual matrix product with u seen as a n × 1 matrix. The
matrix uuT – called the outer product of u with itself – is clearly symmetric, and all

3

its columns are scalar multiples of u. Therefore, the rank of this matrix is 1, which
explains the the name “rank-1 update”. Thus, if we start out with a symmetric matrix
B0, then Bk will be symmetric for all k, as all the updates are symmetric. Moreover,
the rank-1 condition (2.1) guarantees that Bk and Bk+1 are “close” to each other in
the rank sense.

So far we did not specify the choice of u. This choice is fixed when the require-
ments of P4 are satisfied through the secant condition (1.2): multiplying (2.1) by δk

and substituting the result into (1.2), we find

(uTδk)u = γk −Bkδk. (2.2)

Multiplying the transpose of this equation by δk, we obtain

(uTδk)2 = (γk −Bkδk)Tδk. (2.3)

Equation (2.2) shows that

u =
γk −Bkδk

uTδk

,

thus, (2.1) and (2.3) imply that the updating rule should be as follows,

Bk+1 = Bk +
(γk −Bkδk)(γk −Bkδk)T

(uTδk)2

= Bk +
(γk −Bkδk)(γk −Bkδk)T

(γk −Bkδk)Tδk

. (2.4)

Note that since γk = ∇f(xk+1) −∇f(xk) and δk = αkdk , we can compute the SR1
update from the “recycled” information referred to in P4.

When Bk+1 is computed via the updating rule (2.4) Algorithm 1.1 is called the
symmetric rank 1 method (or SR1). This method was independently suggested by
Broyden, Davidson, Fiacco-McCormick, Murtagh-Sargent, and Wolfe in 1967-69. The
updates of the SR1 method are very simple to compute, but they have the drawback
that Bk is not always positive definite and dk might not always be defined or be a
descent direction. Moreover, (γk − Bkδk)Tδ can be close to zero which leads to very
large updates.

It remains to address property P6. Note that once dk is known, computing
αk, xk+1,∇f(xk+1, γk and δk is very cheap. Moreover, since an outer product of two
n× 1 vectors necessitates the computation of n2 entries, and since adding two n× n
matrices takes n2 additions, the total work for computing the updated matrix Bk+1

from Bk and dk is of order O(n2).
However, in order to compute dk we need to solve the linear system of equations

Bkdk = −∇f(xk). (2.5)

Gaussian elimination takes 2n3/3 operations to compute dk. There are better meth-
ods to solve the system (2.5) numerically, but all practical methods take O(n3) op-
erations (although some theoretical methods reduce this complexity slightly). No
known method can solve (2.5) in the O(n2) operations apparently asked for in P6.
Intuitively, it should be clear that this is the case, because even if we guessed the
solution, verifying that dk satisfies the system necessitates the computation of n inner

4



products – one for each column of Bk multiplied with dk – each of which takes n
multiplications and n − 1 additions, and hence this takes O(n2) operations in total.
(Our analysis is crude, as we perform only a simple operations count without taking
into account facts such as that performing a multiplication on a computer takes much
more time than an addition.) Thus, the SR1 method, it seems, does not satisfy the
complexity requirements of P6. Luckily, a way out of the dilemma is given by the
Sherman–Morrison–Woodbury formula:

Theorem 2.1 (Sherman–Morrison–Woodbury). If B ∈ R
n×n and U, V ∈ R

n×p

are matrices then

(B + UV T)−1 = B−1 −B−1U(I + V TB−1U)−1V TB−1.

Proof. See problem set.

The usefulness of this formula is quickly understood when we apply it in the
context of SR1 updates: suppose we knew Hk = B−1

k . Then, applying the Sherman-
Morrison-Woodbury formula to B+ = Bk+1, B = Bk, U = u = (γk − Bkδk) and
V = UT (that is, p = 1 in this case), we find

Hk+1 = (B+)−1

= B−1 −B−1u
(

1 + uTB−1u
)−1

uTB−1

= Hk +
(δk −Hkγk)(δk −Hkγk)T

(δk −Hkγk)Tγk

.

Thus, Hk+1 is just a rank 1 update of Hk. But since we have assumed that Hk is
known, computing dk takes only O(n2) work because this is obtained via the matrix-
vector multiplication dk = −Hk∇f(xk). Hence, computing δk and γk takes only
O(n2) operations. Finally, because outer products of vectors take O(n2) operations,
Hk+1 can be computed from Hk in O(n2) time.

Of course, this saving was only possible because we assumed that B−1

k = Hk is
known. But if we start Algorithm 1.1 with a matrix B0 whose inverse is know, for
example with B0 = I, then we need never form the matrices Bk and can work directly
with the updates Hk in every iteration. The SR1 method then takes only O(n2) work
per iteration, which is a considerable saving over the Newton-Raphson method which
takes O(n3) work due to the solving of a linear system in each iteration.

It is possible to analyse the local convergence of the SR1 method and show that
the method converges superlinearly in a neighbourhood of a local minimiser of f .
Thus, if the SR1 method is properly implemented, it can combine convergence speeds
similar to those of the Newton-Raphson method with a lower complexity.

3. BFGS Updates. SR1 updates are easy to use, but they have the disadvan-
tage that Bk is not guaranteed to be positive definite, and dk is not guaranteed to be
a descent direction.

We are now going to describe the most widely used optimisation algorithm in un-
constrained optimisation: the BFGS (Broyden– Fletcher–Goldfarb–Shanno) method,
which is based on an updating rule for Bk that satisfies all six properties P1–P6 on
our wish list. Thus, this method overcomes the weaknesses of SR1 while retaining its
strengths.

5

Maintaining positive definiteness comes at the slight price of requiring rank 2
updates: Bk+1 is of the form

Bk+1 = Bk + uuT + vvT,

that is, the update consists of a sum of two symmetric rank 1 matrices, and such
matrices are of rank 2 if u and v are linearly independent.

In a sense, the SR1 rule describes the “best possible” updates we can achieve
with rank 1 updates, while the BFGS formula describes the “best possible” updates
achievable with rank 2 updates.

BFGS updates are described by the relation

Bk+1 = Bk −
BkδkδT

k Bk

δT
k Bkδk

+
γkγT

k

γT
k δk

, (3.1)

where γk = ∇f(xk+1)−∇f(xk) and δk = xk+1− xk = αkdk are defined as in Section
1.1. We will see shortly how it is motivated mathematically.

The same comment applies to (3.1) as to the complexity of computing the up-
date (2.4): if dk was known, computing the update would take O(n2) operations, but
the computation of dk requires the solution of the linear system Bkdk = −∇f(xk).
Of course, the Sherman–Morrison–Woodbury formula could save us once again (see
problem set), but here we will pursue a slightly different path to achieving a complex-
ity reduction: maintaining Bk as a Cholesky factorisation Bk = LkLT

k . In fact, as a
by-product of our approach we will find that Bk+1 inherits the positive definiteness
property from Bk, a fact that automatically guarantees that the requirements P1 and
P2 are met.

Definition 3.1. Let X ∈ R
n×n be a symmetric matrix. We say that X has a

Cholesky factorisation if there exists a lower-triangular matrix L ∈ R
n×n with posi-

tive diagonal, that is, Lij = 0 if i < j and Lii > 0 for all i, and such that X = LLT.

Proposition 3.2. B ∈ R
n×n has a Cholesky factorisation B = LLT if and only

if X is positive definite symmetric. Moreover, if the Cholesky factorisation exists,
then L is unique.

Proof. See e.g. Golub-Van Loan “Matrix Computations”, 3rd edition, Johns Hop-
kins University Press. You may also attempt to prove this result by induction on n,
which is not too difficult and makes you discover an actual algorithm for the compu-
tation of L.

Suppose Bk is positive definite symmetric and that we know its Cholesky factori-
sation Bk = LkLT

k . Then solving the linear system Bkdk = −∇f(xk) is the same as
solving the two triangular systems

Lkgk = −∇f(xk), (3.2)

LT
k dk = gk. (3.3)

Triangular systems are great because they can be solved by direct back-substitution.
For example, the system

[

2 0
1 3

][

x1

x2

]

=

[

3
4

]

6



can be solved as follows: the value of x1 can be read off the first equation, yielding
x1 = 3/2. After substituting this value into the second equation, we can simply read
off the value of x2 and find x2 = (4− 3/2)/3. If we generalise this procedure, we find
that solving (3.2) for gk takes

∑n

l=1
[2(l−1)+1] = n2 operations, and likewise solving

(3.3) for dk takes n2 operations.
Thus, if the Cholesky factorisation of Bk is available, the computation of dk incurs

an O(n2) cost and the BFGS method takes O(n2) work per iteration. The main idea
of the BFGS method then becomes to seek a sensible updating rule Lk ← Lk+1

for the Cholesky factor and to take Bk+1 = Lk+1L
T
k+1

, which by Proposition 3.2
automatically guarantees that Bk+1 is symmetric positive definite. In order to address
the requirement P5, we will attempt to minimise the distance of Lk and Lk+1 in a
well-defined sense. Furthermore, in order to meet the requirement P4, we will choose
Lk+1 so that Bk+1 satisfies the secant condition (1.2).

Let us put that programme into practice: In order to avoid cluttering our equa-
tions with indices we write B, L, α d δ and γ for Bk, Lk, αk, dk, δk and γk respectively,
and B+, L+ etc. instead of Bk+1, Lk+1 and so forth. At first, we will neglect the
condition that L is lower triangular and replace it by an arbitrary nonsingular matrix
J such that JJT = B and J+JT

+ = B+.
We propose to solve the minimisation problem

min
J+

‖J+ − J‖F (3.4)

s.t. J+g = γ, (3.5)

where ‖ · ‖F is the Frobenius norm and g ∈ R
n is a parameter vector, and then we

choose g so that

JT
+δ = g. (3.6)

The result will be that B+ = J+JT
+ satisfies the quasi-Newton equation (1.2), and

that ‖J+ − J‖F , a measure of distance between B+ and B, is minimised under this
condition.

The minimisation problem (3.4) is clearly the same as the smooth strictly convex
optimisation problem

min
J+

tr
(

(J+ − J)(J+ − J)T
)

(3.7)

s.t. J+g = γ,

where tr(A) =
∑

i Aii denotes the trace of a square matrix A. This problem can be
reformulated as

min
J+

〈J+ − J, J+ − J〉 (3.8)

s.t. 〈J+, eig
T〉 = γi (i = 1, . . . , n), (3.9)

where ei is the i-th coordinate vector and

〈·, ·〉 : Rn×n × R
n×n → R

(A, B) 7→ 〈A, B〉 := tr(ABT) =
∑

i,j

aijbij

7

is a Euclidean inner product on the vector space R
n×n of n × n real matrices. It is

easy to check that the Euclidean norm that corresponds to this inner product is the
usual Frobenius norm, defined by

‖A‖F =

√

∑

i,j

A2
ij .

Thus, (Rn×n, 〈·, ·〉) is a Euclidean space of dimension n2. The problem (3.8) is
then the task of finding the point closest to J in the affine subspace defined by the
constraints (3.9). The minimum is achieved at the unique point J∗

+ where (J∗

+ − J)
is orthogonal to the affine subspace, that is, (J∗

+ − J) ∈ span(e1g
T, . . . , engT).

Another way to express this is to say that J∗

+ is characterised by the existence of
a vector λ∗ ∈ R

n such that

2(J∗

+ − J)− λ∗gT = 0,

J+g = γ.

Both conditions are satisfied for

J∗

+ = J +
(γ − Jg)gT

gTg
and (3.10)

λ∗ = 2
γ − Jg

gTg
,

and hence J∗

+ is the global minimiser of (3.4).

Condition (3.6) now becomes

JTδ =

(

1−
(γ − Jg)T

gTg
δ

)

g, (3.11)

and since JTδ 6= 0, this can only be satisfied for g = βJTδ with β 6= 0. Substituting
into (3.11), we obtain

1 =

(

1−
β(γTδ − αδTBδ)

β2δTBδ

)

β,

or

β = ±

√

γTδ

δTBδ
. (3.12)

Note that if α satisfies the Wolfe conditions of Lecture 2, then

γTδ =
(

∇f(x + αd)−∇f(x)
)T

αd ≥ (c2 − 1)φ′(0) > 0.

Therefore, the square-root in (3.12) is real.

Expressing the update of J in terms of β, we find

J+ = J +
(γ − βBδ)δTJ

βδTBδ
. (3.13)

8



The corresponding update of B is

B+ = J+JT
+

= JJT +
(γ − βBδ)δTB

βδTBδ
+

Bδ(γ − βBδ)T

βδTBδ
+

(γ − βBδ)(γ − βBδ)T

β2δTBδ

= . . .

= B −
BδδTB

δTBδ
+

γγT

β2δTBδ
.

Using (3.12), this yields the BFGS formula 3.1:

B+ = B −
BδδTB

δTBδ
+

γγT

γTδ
.

Note that this formula is independent of the sign of β, and more importantly of J ,
that is to say, we could have chosen any factorisation B = JJT of B into a nonsingular
matrix J and its transpose and we would have ended up with the same update for B!
This remarkable property makes it possible to choose J = L, where L is the Cholesky
factor of B. With this choice the transpose of Equation (3.13) becomes

JT
+ = LT +

LTδ(γ − βBδ)T

βδTBδ
.

This is an upper triangular matrix plus a rank 1 update.
Proposition 3.3. Let X ∈ R

n×n be a square matrix. Then there exist unique
matrices Q, R ∈ R

n×n such that Q is orthogonal (that is, QTQ = I) and R is upper
triangular (that is Rij = 0 if i > j) and with nonnegative diagonal entries (that is,
Rii ≥ 0 for all i), and such that X = QR.

Proof. See e.g. Golub-Van Loan, “Matrix Computations”, 3rd Edition, Johns
Hopkins University Press. This result is easy to prove because the column vectors of
Q are the vectors obtained when a Gram-Schmidt orthogonalisation is applied to the
column vectors of X , and the columns of R consist of the scalar weights needed to
write the columns of X as linear combinations of the columns of Q. The result can
also be easily extended to rectangular matrices.

Using the triangular structure of JT
+ , it is easy to show that the QR factorisation

of JT
+ = Q+R+ can be computed in O(n2) operations. But then we have

B+ = J+JT
+ = RT

+QT
+Q+R+ = RT

+R+,

and this shows that L+ := RT
+ is the Cholesky factor of B+.

Having derived the BFGS update and a rule for computing the updates of the
Cholesky factor of the approximate Hessian Bk, we can now formulate the BFGS
algorithm with all the pieces put together:

Algorithm 3.4 (BFGS method).

S0 Choose a starting point x0 and a lower triangular matrix L0 with positive
diagonal entries (the usual choice is L0 = I, if no other information about
the problem is known). Set a termination tolerance ε > 0. Set k = 0.

S1 If ‖∇f(xk)‖ ≤ ε then stop and output xk as an approximate local minimiser.

9

S2 Otherwise solve the triangular system Lkgk = −∇f(xk) for gk, and then the
triangular system LT

k dk = gk for dk.

S3 Perform a line search to find a positive step length αk > 0 such that f(xk +
αkdk) < f(xk), and such that αk satisfies the Wolfe conditions.

S4 Set δk := αkdk, xk+1 = xk + δk. Compute γk := ∇f(xk+1) − ∇f(xk) and

βk = ±
√

γT
k δk/δT

k Bkδk.

S5 Compute

JT
k+1 = LT

k +
LT

k δk(γk − βkBkδk)T

βkδT
k Bδk

,

and then compute the QR factorisation JT
k+1

= Qk+1Rk+1. Set Lk+1 := RT
k+1

and return to S1.

The BFGS algorithm spends only O(n2) computation time per iteration, yet its
convergence behaviour is not unlike that of the Newton-Raphson method: it can
be shown that the BFGS method has local Q-superlinear convergence (but not Q-
quadratic). It can also be shown that if the BFGS algorithm is used on a strictly
convex quadratic function and in conjunction with exact line searches, then Bk be-
comes the exact (constant) Hessian after n iterations.

4. Final Comments. In the lectures on trust region algorithms we will see that
quasi-Newton updates are useful not only in combination with line searches, but also
in methods that rely on building local models of the objective function in the form of
polynomials of degree 2.

The complexity per iteration and the convergence speed of quasi-Newton meth-
ods are an exact tradeoff between the advantages and disadvantages of the steepest
descent and Newton-Raphson methods. We summarise this in the following table,
where C(f) denotes the cost of one function evaluation of f :

cost per iteration convergence rate

Steepest descent O
(

nC(f)
)

Q-linear

Quasi-Newton O
(

n2 + nC(f)
)

Q-superlinear

Newton-Raphson O
(

n3 + n2C(f)
)

Q-quadratic

10


