
SECTION C: CONTINUOUS OPTIMISATION

LECTURE 5: CONJUGATE GRADIENTS

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2005, DR RAPHAEL HAUSER

1. The Need for Further Methods. In Lecture 4 we motivated quasi-Newton
methods by a reduced complexity per iteration as compared to the Newton-Raphson
method. The notion of complexity we used was based on counting ”basic computer
operations”, without taking into account that some operations are less costly than
others. It is possible to be more rigorous and introduce mathematical models of
computers, so-called Turing machines, that can operate on rational, real or complex
numbers directly, but developing the necessary theory would lead us too far astray.
For our purposes it usually suffices to think of a computer as being able to operate
on real numbers, and occasionally we will take roundoff errors into account.

Any notion of complexity obtained in the framework of such a computational
model reflects the running time of the implementation of an algorithm on an actual
computer only to a first approximation. Real existing computers work with floating
point numbers and have multiple levels of memory. When the data that needs to be
carried over between iterations exceeds the active memory of the central processor,
data has to be shifted back and forth between different levels of memory (for example
between CPU and hard drive) and the machine can end up spending most of its pro-
cessing time on data transfers rather than actual computations. In addition, different
kinds of operations take different amounts of time: divisions are usually more costly
than multiplications which are themselves more costly than additions. In practical
implementations, these issues have to be taken into account in order to produce fast
and reliable computer programs.

Quasi-Newton methods are amongst the most widely used algorithms in uncon-
strained optimisation, but any practical implementation makes it necessary to keep
a n × n matrix Hk (the inverse of the approximate Hessian Bk) or Lk (the Cholesky
factor of Bk) in the computer memory. In other words, there is an O(n2) memory

requirement for quasi-Newton methods. In comparison, the steepest descent method
only occupies O(n) memory at any given time: after xk+1 has been computed, the
registers that were previously used to store the n components of ∇f(xk) can be over-
written with the data ∇f(xk+1), then xk+1 can be overwritten with xk+2 etc.

In situations where n is very large, the steepest descent method can therefore still
cope with keeping all the necessary data in the main memory when quasi-Newton
methods have long ceased to be effective and spend most of their time in data trans-
fers. In this lecture we will analyse the conjugate gradient method which has the same
memory requirements and complexity per iteration as the steepest descent method
but typically converges much faster.

2. The Conjugate Gradient Method. We first develop the method in the
context of minimising convex quadratic functions. Later, we will generalise the ap-
proach to arbitrary objective functions and call it Fletcher–Reeves method.

Let us consider the minimisation of a strictly convex quadratic objective function

(P) min
x∈Rn

f(x) = xTBx + bTx + a,

where B is a symmetric positive definite matrix. Using the first order necessary

1

optimality conditions from Lecture 2, we find that (P) is equivalent to the problem
of solving the linear system 2Bx = −b.

Here are a few facts about real symmetric matrices that you should remem-
ber from your course on linear algebra: let A ∈ R

n×n. If A is symmetric, then A
can be written in decomposed form as A = QDQT, where QTQ = I (that is, Q
is orthogonal), and D is the diagonal matrix D = Diag(λ(A)) which has the vector
λ(A) = [λ1(A) ... λn(A)]T ∈ R

n of eigenvalues of A on its diagonal, and where the com-
ponents of λ(A) are ordered in nonincreasing order: λ1(A) ≥ · · · ≥ λn(A). All eigen-
values are real. The columns of Q form an orthogonal basis of eigenvectors of A. A is
invertible if and only if D is, and then A−1 = QD−1QT, where D−1 = Diag(λ(A)−1)
is simply obtained as the component-wise inverse of D. A is positive semidefinite
(respectively positive definite) if and only if λi(A) ≥ 0 (respectively λi(A) > 0) for

all i. In these cases the matrix D
1

2 := Diag(
√

λ(A)), obtained as the component-wise

square root of D, is well-defined, and we can set A
1

2 := QD
1

2 QT. A
1

2 is the unique

symmetric positive semidefinite matrix for which the identity A
1

2 A
1

2 = A holds.
Let us now return to our optimisation problem (P) and observe that an additive

constant in the objective function does not change its minimiser. Therefore, we can
reformulate the problem as

(P’) min f(x) = (x − x∗)TB(x − x∗) = yTy = g(y),

where x∗ = −(1/2)B−1b and y = B
1

2 (x − x∗). Thus, the objective function of our
minimisation problem looks particularly simple in the transformed variables y. Of
course, transforming the problem into y-coordinates is the same as solving the original
problem: we would first have to find x∗, which is precisely the minimiser of (P)! So,
there seems to be no gain from considering (P’).

Nevertheless, we can use y-coordinates conceptually to understand how the con-
jugate gradient algorithm works in the original coordinates x: we would like to
construct an iterative sequence (xk)k∈N such that the corresponding sequence of

yk = B
1

2 (xk − x∗) behaves sensibly. Let us assume that the current iterate is
xk and that the search direction dk has been computed. The exact line search
αk = argminα f(xk+αdk) is the same as αk = argminα g(yk+αpk), where pk = B

1

2 dk

is the search direction in y-coordinates. Therefore,

αk = argmin
α

‖yk‖
2 + 2αpT

k yk + α2‖pk‖
2.

Since this is a univariate quadratic minimisation problem, it is trivial to establish that

αk = −
pT

k yk

‖pk‖2
.

If we set yk+1 = yk + αkpk, then we find

yT
k+1pk =

(

y −
pT

k yk

‖pk‖2
pk

)T

pk = yT
k pk − yT

k pk = 0. (2.1)

2.1. A key observation. A key observation is that the relation (2.1) is inde-

pendent of the location of xk : as long as we use the same search direction d = ±dk

but an arbitrary starting point x ∈ R
n for the line search

α∗ = argmin
α∈R

f(x + αd),

2

the point x+ = x + α∗d ends up lying in the affine hyper-plane πk := x∗ + B−1/2p⊥k ,
where

p⊥k =
{

y : pT
k y = 0

}

is the orthogonal complement of pk. In subsequent searches, it therefore never makes
sense to leave πk again, in fact, f always improves when moving from a point x ∈ R

n

to its (skewed) projection along dk into πk , see Figure 2.1.

PSfrag replacements

x

xk

dk

x∗

x+ xk+1

πk

p⊥k

pk

y

yk

y∗ = 0

y+

yk+1

Fig. 2.1. One step of the conjugate gradient method applied at different starting points x with
search directions ±dk in x-coordinates (left-hand side of diagram) and the corresponding directions
±pk in the transformed coordinates y (right-hand side of diagram). The computation takes place in
x-coordinates, but the geometry is best understood in y-coordinates.

The requirement that all subsequent line searches are to be conducted within
πk amounts to the condition pj ⊥ pk for all j > k, or equivalently expressed in
x-coordinates,

dT
k Bdj = 0 ∀j ≥ k + 1. (2.2)

If this relation holds, we say that dk and dj are B-conjugate (which is the same as
orthogonality with respect to the Euclidean inner product defined by B).

Note that the restriction f |πk
is a strictly convex quadratic function on the affine

subpace πk. After choosing a search direction dk+1 that satisfies (2.2), we can repeat
our argument and find that xk+2 will lie in an affine hyper-plane πk+1 of πk to which
any future line-search must be restricted. Arguing this way starting with k = 0
and π0 = R

n, we find that the dimension of the search space πk is reduced by 1
in each iteration. This procedure must therefore terminate after n iterations at the
latest (that is, after iteration k = n − 1). In the process, we will have chosen search
directions dk (k = 0, . . . , n − 1) which are mutually B-conjugate:

dT
i Bdj = 0 ∀ i 6= j.

We have just developed all the different parts that constitute a proof of the following
termination result:

3

Theorem 2.1. Let f(x) = xTBx + bTx + a be defined on R
n with B � 0, let

x0 ∈ R
n be a starting point and dk ∈ R

n \{0} (k = 0, . . . , n−1) mutually B-conjugate

search directions. Furthermore, for (k = 0, . . . , n − 1) let xk+1 = xk + αkdk, where

αk = arg minα∈R f(xk + αdk). Then xn is the global minimiser of f .

Note that since B is nonsingular, there cannot exist more than n mutually B-
conjugate search directions dk. This yields an alternative argument for the proof of
termination after n steps.

2.2. How to choose B-conjugate search directions. So far we have a finite
termination result for a family of algorithms that iterate over exact line searches along
mutually conjugate search directions. We did not otherwise specify how to compute
these directions. In general, we could do this by choosing any descent direction vk and
then applying a procedure that corresponds to a Gram–Schmidt orthogonalisation in
the transformed space:

Lemma 2.2. Let v0, . . . , vn−1 ∈ R
n be linearly independent vectors, and let

d0, . . . , dn−1 be recursively defined as follows,

dk = vk −

k−1
∑

j=0

dT
j Bvk

dT
j Bdj

dj . (2.3)

Then dT
i Bdk = 0 for all i 6= k.

Proof. We proceed by induction over k and show that all distinct di with i ≤ k
are mutually B-conjugate. For k = 0 there is nothing to prove. We may therefore
assume that dT

i Bdj = 0 for all i, j ∈ {0, . . . , k − 1}, i 6= j. Let i < k. Then

dT
i Bdk = dT

i Bvk −
k−1
∑

j=0

dT
j Bvk

dT
j Bdj

dT
i Bdj = dT

i Bvk − dT
i Bvk = 0.

Note that the linear independence of the vj guarantees that none of the dj is zero,
and hence that dT

j Bdj > 0 for all j.

Unfortunately, this procedure would require that we hold the vectors dj (j < k)
in the computer memory. Thus, as k approaches n the method would require O(n2)
memory, defying one of the main purposes of the new algorithm. Luckily, a second key
observation shows that we can get away with O(n) storage if we choose the steepest
descent direction as vk :

Lemma 2.3. Let the procedure of Theorem 2.1 be applied to the B-conjugate

search directions dk (k = 0, . . . , n − 1), where d0 = −∇f(x0) and dk is computed

via (2.3) with vk = −∇f(xk) (k = 1, . . . , n − 1). Then ∇f(xj)
T∇f(xk) = 0 for

(j = 0, . . . , k − 1), and (k = 1, . . . , n − 1).

Proof. First, note that ∇f(xk) = 2Bxk + b for all k. We claim that this implies
that dT

j ∇f(xk) = 0 for (j = 0, . . . , k − 1). In order to prove this claim, we proceed
by induction over k. The statement holds trivially true for k = 0. We can therefore

4

assume that it holds for k, and it suffices to prove that it holds for k + 1 too. By the
induction hypothesis we have

dT
j ∇f(xk+1) = dT

j (2B(xk + αkdk) + b)

= dT
j ∇f(xk) + 2αkdT

j Bdk

= 0, (j = 0, . . . , k − 1).

On the other hand, dT
k ∇f(xk+1) = 0 is the first order optimality condition for the

line search minα f(xk + αdk) that defines xk+1. Hence, our claim is true. Next, note
that (2.3) implies that

span(d0, . . . , dk) = span(∇f(x0), . . . ,∇f(xk)) (k = 0, . . . , n − 1).

For j < k there exist therefore λ1, . . . , λj such that ∇f(xj) =
∑j

i=0 λidi, and we have

∇f(xj)
T∇f(xk) =

j
∑

i=1

λdT
i ∇f(xk) = 0.

We are now ready to put all the pieces of the conjugate gradient algorithm to-
gether: substituting ∇f(xj+1)−∇f(xj) = 2αjBdj into (2.3) with vk = −∇f(xk), we
obtain

dk = −∇f(xk) +
k−1
∑

j=0

∇f(xj+1)
T∇f(xk) −∇f(xj)

T∇f(xk)

∇f(xj+1)Tdj −∇f(xj)Tdj
dj .

Lemma 2.3 implies that all but the last summand in the the right hand side expression
are zero. Moreover, multiplying Equation (2.3) by ∇f(xk)T and then replacing k by
k − 1, we deduce from Lemma 2.3 that dT

k−1∇f(xk−1) = −‖∇f(xk−1)‖
2. Together

with dT
k−1∇f(xk) = 0 this implies that

dk = −∇f(xk) +
‖∇f(xk)‖2

‖∇f(xk−1)‖2
dk−1. (2.4)

This is the conjugate gradient rule for updating the search direction.
Note that for the computation of dk we only need to keep two vectors and one

number stored in the main memory: dk−1, xk and ‖∇f(xk−1)‖
2, which can be over-

written when the corresponding new data are computed. Let us now summarise the
conjugate gradient algorithm:

5

Algorithm 2.4.

S0 Choose x0, set d0 = −∇f(x0).
S1 For k = 0, 1, . . . , n − 1 do the following:

1. compute αk = arg minα f(xk + αdk),
2. set xk+1 = xk + αkdk,

3. if k < n − 1, compute

dk+1 = −∇f(xk+1) +
‖∇f(xk+1)‖

2

‖∇f(xk)‖2
dk .

S2 Return x∗ = xn.

Apart from the low memory requirements, the method has great advantages when
a quick approximation to x∗ is needed: in general xk approximates x∗ closely after
very few iterations, and the remaining iterations are used for fine-tuning the result.
On the other hand, the conjugate gradient algorithm runs into numerical problems
when B is ill-conditioned, that is, when the ratio κ(B) = λ1(B)/λn(B) between the
largest and smallest eigenvalues of B is very large. In these cases the algorithm can
be improved through the use of so-called preconditioners. For further details see for
example G. Golub and C. Van Loan “Matrix Computations”, Third Edition, Johns
Hopkins University Press.

3. The Fletcher-Reeves Method. Algorithm 2.4 can be adapted for the min-
imisation of an arbitrary C1 objective function f and is then called Fletcher-Reeves

method. The main differences are the following:

1. Exact line-searches have to be replaced by practical line-searches. Unfortu-
nately, the Wolfe conditions are not always sufficient for this purpose, because
we should also require that the new search direction is a descent direction,
that is,

−‖∇f(xk+1)‖
2 +

‖∇f(k+1)‖
2

‖∇f(xk)‖2
dT

k ∇f(xk+1) < 0.

2. A termination criterion ‖∇f(xk)‖ < ε has to be used to guarantee that the
algorithm terminates in finite time.

3. Since Lemma 2.3 only holds for quadratic functions, the conjugacy of the
search directions dk can only be achieved approximately and is lost over time,
unless dk is set to the steepest descent direction again from time to time.
Usually, one chooses such a reset every n iterations. If such a restart occurs
in a sufficiently small neighbourhood of a local minimiser x∗ of f , then the
Fletcher-Reeves method can be expected to behave similarly to the conjugate
gradient algorithm applied to the second order Taylor approximation of f
around x∗.

6

