
SECTION C: CONTINUOUS OPTIMISATION

LECTURE 6: TRUST REGION METHODS

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2005, DR RAPHAEL HAUSER

1. Trust Region Methods. All unconstrained optimisation methods we dis-
cussed so far in this course are based on line-searches

min
α>0

f(xk + αdk),

where dk is a descent direction. Thus, in effect, in each iteration one replaces the
n-dimensional minimisation problem

min
x∈Rn

f(x) (1.1)

by a simpler one-dimensional minimisation problem. Line-search methods are widely
used in practical optimisation codes, but this is not the only useful principle for con-
structing iterative minimisation algorithms. Trust region methods constitute a second
fundamental class of algorithms. In this approach (1.1) is again replaced by a sequence
of easier problems, but instead of reducing the problem dimension the simplicity is
achieved by replacing f with a degree 2 polynomial. Conceptually, the idea can be
described as follows:

• In iteration k, replace f(x) by a locally valid quadratic model function mk(x)
(recall that we already encountered this idea in the context of quasi-Newton
methods).

• Choose a neighbourhood Rk of the current iterate xk in which mk(x) can be
trusted to approximate f well (we do not care about how well mk approxi-
mates f outside Rk).

• The next iterate xk+1 is found by approximately minimising the model func-
tion over the trust region,

xk+1 ≈ arg min
x∈Rk

mk(x). (1.2)

It may seem surprising that we propose to replace the unconstrained optimisation
problem (1.1) by the constrained trust region subproblem (1.2), as constraints intro-
duce additional difficulties. However, this is worthwhile doing because (1.2) need only
be approximately solved, and this can be done efficiently when

mk(x) = f(xk) +∇f(xk)T(x − xk) +
1

2
(x− xk)TBk(x− xk) (1.3)

is a quadratic function and the trust region Rk is chosen judiciously, see Lecture 7.
The linear part of (1.3) coincides with the first order Taylor approximation of f

around xk, so that mk(x) will be a good local approximation of f(x) if Bk ≈ D2f(xk).
To make the method work, we will thus have to worry about how to update Bk cheaply.
But note that the quasi-Newton Hessian approximations discussed in Lecture 5 are
perfect for this job!

1

1.1. Accepting and Rejecting Updates. Let yk+1 be the approximate min-
imiser of the trust region subproblem (1.2). In principle, this is the point we would
like to select as our next iterate xk+1. However, yk+1 is computed on the basis of
the model function mk, and it could happen that moving to yk+1 leads to an increase
rather than decrease in of the true objective function f . Trust-region methods there-
fore accept yk+1 only if the decrease achieved in f is at least a fixed proportion of the
decrease ”promised” by mk,

xk+1 =

{

yk+1 if
f(xk)−f(yk+1)

mk(xk)−mk(yk+1)
> η,

xk otherwise,
(1.4)

where η ∈ (0, 1/4) is fixed. Note that rejecting the update does not imply that the
algorithm will stall, because we can still shrink the trust region so that yk+2 6= yk+1.

1.2. Updating the Trust Region. The easiest way to define a trust region Rk

is to choose the closed ball of radius ∆k around xk in some norm ‖ · ‖,

Rk = {x ∈ R
n : ‖x− xk‖ ≤ ∆k}.

For simplicity, we will assume that ‖ · ‖ is the Euclidean norm. ∆k is called the trust
region radius.

In order to define a new trust region Rk+1 around xk+1, it suffices to fix a rule
on how to select ∆k+1. The following rule is a popular choice, where yk+1 is as in
Section 1.1,

∆k+1 =











∆k

4 if
f(xk)−f(yk+1)

mk(xk)−mk(yk+1)
< 1

4 ,

min(2∆k, ∆max) if f(xk)−f(yk+1)
mk(xk)−mk(yk+1)

> 3
4 ,

∆k otherwise.

(1.5)

The rule is designed so that ∆k never exceeds ∆max, and it is motivated by comparing
the objective function decrease f(xk)−f(yk+1) with the decrease mk(xk)−mk(yk+1)
”promised” by the model function:

• If the actual decrease was below our expectations, this indicates that mk

should be regarded as a more local model than before. We thus find a rea-
sonable ∆k+1 by shrinking ∆k .

• If the actual decrease was above our expectations, we feel confident to expand
the trust region by selecting ∆k+1 as an expansion of ∆k.

• If there is neither reason for gloom nor euphoria, we stick to the previous
value ∆k+1 = ∆k.

1.3. The Algorithm. By now we assembled the necessary elements to formu-
late a generic trust region algorithm:

Algorithm 1.1 (Generic Trust region Method).
S0 Choose ∆max > 0, ∆0 ∈ (0, ∆max), η ∈ (0, 1/4), x0 ∈ R

n, B0, ε > 0.
S1 While ‖∇f(xk)‖ ≥ ε repeat

Compute yk+1 as the approximate minimiser of (1.2).
Determine xk+1 via (1.4).

2



Compute ∆k+1 using (1.5).
Build a new model function mk+1(x).
k ← k + 1.

end
S2 Return xk.

2. The Cauchy Point. In step S1 of the algorithm, the approximate minimiser
yk+1 can be computed in many different ways. Some of these methods will be discussed
in Lecture 7. We intend to use the remaining part of the present section to derive a
rather general convergence result for Algorithm 1.1, see Section 3 below. For this to
work out, we need to assume that the method chosen for computing yk+1 compares
favourably to a specific benchmark, the so-called Cauchy point. This point is obtained
when a steepest descent line-search is applied to mk at xk and is restricted to Rk.

An unrestricted line-search in the direction −∇f(xk) yields the step-length mul-
tiplier

αu
k := argmin

α≥0
mk(xk − α∇f(xk))

= argmin
α≥0

f(xk)− α∇f(xk)T∇f(xk) +
α2

2
∇f(xk)TBk∇f(xk)

=

{

+∞ if ∇f(xk)TBk∇f(xk) ≤ 0,
∇f(xk)T∇f(xk)

∇f(xk)TBk∇f(xk) otherwise.

If we want to stay within Rk we have to ”clip” αu
k to a constrained step-length

multiplier αc
k. Note that α 7→ mk(xk − α∇f(xk)) is strictly decreasing on [0, αu

k).
Moreover, the radius ‖xk − α∇f(xk)‖ is strictly increasing over the same interval.
Therefore, the correct clipping rule is given by

αc
k = min

(

∆k

‖∇f(xk)‖
, αu

k

)

(2.1)

and yc
k := xk − αc

k∇f(xk) is the Cauchy point of the trust region subproblem (1.2).

3. Global Convergence of Trust Region Algorithms. Next we will show
that Algorithm 1.1 converges globally.

Theorem 3.1. Let Algorithm 1.1 be applied to the minimisation of f ∈ C2(Rn, R),
and for all k let yk+1 be computed such that mk(yk+1) ≤ mk(yc

k) holds. Let there exist
β > 0 such that for all k, ‖Bk‖, ‖D

2f(xk)‖ ≤ β, and finally, let ∆0 ≥ ε/(14β). Then
exactly one of two following alternatives occurs:

(i) The algorithm does not terminate, but limk→∞ f(xk) = −∞ and f is un-
bounded below.

(ii) The algorithm terminates in finite time, returning an approximate minimiser.

Proof. If ‖∇f(xk)‖ < ε occurs for some k ∈ N then we are in case (ii) and nothing
needs to be proven. We may therefore assume that ‖∇f(xk)‖ ≥ ε for all k, and it
remains to show that this assumption implies f(xk)→ −∞.

Claim 1: The update is accepted, i.e., xk+1 = yk+1 in (1.4), for infinitely many k.
Claim 2: Whenever xk+1 = yk+1 occurs, we have f(xk+1)− f(xk) ≤ −ηε2/(28β).

3

Claim 1 follows from Proposition 3.2 below; for Claim 2 see Problem Set 3. It follows
from these two claims that

lim
k→∞

f(xk) =

∞
∑

k=0

f(xk+1)− f(xk) = −∞,

since (1.4) guarantees that the series on the right hand side contains only nonpositive
terms.

We now set out to showing the validity of Claim 1. Intuitively it is clear that when
‖∇f(xk)‖ is bounded below and ∆k becomes sufficiently small, then f(yk+1)−f(xk) ≈
mk(yk+1) − mk(xk) should hold. Indeed, in Lemma 3.5 below we will show that
‖∇f(xk)‖ ≥ ε and ∆k < 2ε/(7β) imply

f(yk+1)− f(xk)

mk(yk+1)−mk(xk)
>

1

4
. (3.1)

Claim 1 then follows immediately from the following result:

Proposition 3.2. There are at most blog4
∆max7β

2ε
c rejected updates between suc-

cessive accepted updates.

Proof. Suppose to the contrary that all updates yk+1 for k = k0, k0 + 1, . . . , k0 +
dlog4

∆max7β

2ε
e =: k1 are rejected. Then

∆k1
= ∆k0

4−(k1−k0) ≤
2ε

7β
,

and (3.1) contradicts our assumption that that yk1+1 is rejected.

It remains to prove (3.1). We divide the argument into several lemmas.

Lemma 3.3. Let ‖∇f(xk)‖ ≥ ε and ∆k < ε/β. Then

yc
k = xk −

∆k

‖∇f(xk)‖
∇f(xk). (3.2)

Proof. If ∇f(xk)TBk∇f(xk) ≤ 0 then (3.2) holds because of (2.1). So, we may
assume that ∇f(xk)TBk∇f(xk) > 0, and then

∆k <
ε

β
<
‖∇f(xk)‖

β
=
‖∇f(xk)‖3

β‖∇f(xk)‖2
≤

‖∇f(xk)‖3

∇f(xk)TBk∇f(xk)
,

But this implies that

∆k

‖∇f(xk)‖
<
∇f(xk)T∇f(xk)

∇f(xk)TBk∇f(xk)
.

The result now follows from (2.1).

Lemma 3.4. Let ‖∇f(xk)‖ ≥ ε and ∆k < ε/(2β). Then

∇f(xk)T(yk+1 − xk) ≤ −
∆k‖∇f(xk)‖

2
.

4



Proof. The relation ∆k < ε
2β
≤ ‖∇f(xk)‖

2β
implies that

−∆k‖∇f(xk)‖+ ∆2
kβ ≤ −

∆k‖∇f(xk)‖

2
. (3.3)

Moreover, by Lemma 3.3, ∆k < ε
2β

< ε
β

implies yc
k = xk −

∆k

‖∇f(xk)‖∇f(xk), and

hence,

mk(yc
k) = f(xk)−∆k‖∇f(xk)‖+

∆2
k

2

∇f(xk)TBk∇f(xk)

‖∇f(xk)‖2
(3.4)

The assumption mk(yk+1) ≤ mk(yc
k) from Theorem 3.1 implies

f(xk) +∇f(xk)T(yk+1 − xk) +
1

2
(yk+1 − xk)TBk(yk+1 − xk)

(3.4)

≤

f(xk)−∆k‖∇f(xk)‖+
∆2

k

2

∇f(xk)TBk∇f(xk)

‖∇f(xk)‖2
,

so that

∇f(xk)T(yk+1 − xk)

≤ −∆k‖∇f(xk)‖+
∆2

k

2

∇f(xk)TBk∇f(xk)

‖∇f(xk)‖2
−

1

2
(yk+1 − xk)TBk(yk+1 − xk)

≤ −∆k‖∇f(xk)‖+ ∆2β

(3.3)

≤ −
∆k‖∇f(xk)‖

2
.

Lemma 3.5. Let ‖∇f(xk)‖ ≥ ε and ∆k < 2ε/(7β). Then

f(yk+1)− f(xk)

mk(yk+1)−mk(xk)
>

1

4
.

Proof. We have

∆k <
2ε

7β
≤

2‖∇f(xk)‖

7β
⇒ β∆k <

‖∇f(xk)‖

4
+

β∆k

8

⇒
β∆k

‖∇f(xk)‖+ 1
2β∆k

<
1

4

⇒
1
2‖∇f(xk)‖∆k −

1
2β∆2

k

‖∇f(xk)‖∆k + 1
2β∆2

k

=
1

2
−

β∆k

‖∇f(xk)‖+ 1
2β∆k

>
1

4
. (3.5)

On the other hand, since ∆k < 2ε/7β < ε/2β, Lemma 3.3 shows that

0 < mk(xk)−mk(yk+1) = ∇f(xk)T(xk − yk+1)−
1

2
(yk+1 − xk)TBk(yk+1 − xk)

≤ ∇f(xk)T(xk − yk+1) +
1

2
β∆2

k ≤ ‖∇f(xk)‖∆k +
1

2
β∆2

k.

5

Furthermore, applying the mean value theorem (twice), we find

f(xk)− f(yk+1) = ∇f(xk)T(xk − yk+1)−
1

2
(yk+1 − xk)TH(yk+1 − xk),

where H = D2f(z) for some z ∈ conv(xk , yk+1) ⊂ Rk. Lemma 3.4 therefore implies

f(xk)− f(yk+1) ≥ ∇f(xk)T(xk − yk+1)−
1

2
β∆2

k ≥
1

2
‖∇f(xk)‖∆k −

1

2
β∆2

k.

Therefore,

f(xk)− f(yk+1)

mk(xk)−mk(yk+1)
≥

1
2‖∇f(xk)‖∆k −

1
2β∆2

k

‖∇f(xk)‖∆k + 1
2β∆2

k

(3.5)
>

1

4
.

6


