SECTION C: CONTINUOUS OPTIMISATION LECTURE 6: TRUST REGION METHODS

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 2005, DR RAPHAEL HAUSER

1. Trust Region Methods. All unconstrained optimisation methods we discussed so far in this course are based on line-searches

$$\min_{\alpha>0} f(x_k + \alpha d_k),$$

where d_k is a descent direction. Thus, in effect, in each iteration one replaces the *n*-dimensional minimisation problem

$$\min_{x \in \mathbb{R}^n} f(x) \tag{1.1}$$

by a simpler one-dimensional minimisation problem. Line-search methods are widely used in practical optimisation codes, but this is not the only useful principle for constructing iterative minimisation algorithms. Trust region methods constitute a second fundamental class of algorithms. In this approach (1.1) is again replaced by a sequence of easier problems, but instead of reducing the problem dimension the simplicity is achieved by replacing f with a degree 2 polynomial. Conceptually, the idea can be described as follows:

- In iteration k, replace f(x) by a locally valid quadratic model function $m_k(x)$ (recall that we already encountered this idea in the context of quasi-Newton methods).
- Choose a neighbourhood R_k of the current iterate x_k in which $m_k(x)$ can be trusted to approximate f well (we do not care about how well m_k approximates f outside R_k).
- The next iterate x_{k+1} is found by approximately minimising the model function over the trust region,

$$x_{k+1} \approx \arg\min_{x \in R_k} m_k(x). \tag{1.2}$$

It may seem surprising that we propose to replace the unconstrained optimisation problem (1.1) by the constrained *trust region subproblem* (1.2), as constraints introduce additional difficulties. However, this is worthwhile doing because (1.2) need only be approximately solved, and this can be done efficiently when

$$m_k(x) = f(x_k) + \nabla f(x_k)^{\mathrm{T}}(x - x_k) + \frac{1}{2}(x - x_k)^{\mathrm{T}}B_k(x - x_k)$$
(1.3)

is a quadratic function and the trust region R_k is chosen judiciously, see Lecture 7.

The linear part of (1.3) coincides with the first order Taylor approximation of f around x_k , so that $m_k(x)$ will be a good local approximation of f(x) if $B_k \approx D^2 f(x_k)$. To make the method work, we will thus have to worry about how to update B_k cheaply. But note that the quasi-Newton Hessian approximations discussed in Lecture 5 are perfect for this job!

1.1. Accepting and Rejecting Updates. Let y_{k+1} be the approximate minimiser of the trust region subproblem (1.2). In principle, this is the point we would like to select as our next iterate x_{k+1} . However, y_{k+1} is computed on the basis of the model function m_k , and it could happen that moving to y_{k+1} leads to an increase rather than decrease in of the *true* objective function f. Trust-region methods therefore accept y_{k+1} only if the decrease achieved in f is at least a fixed proportion of the decrease "promised" by m_k ,

$$x_{k+1} = \begin{cases} y_{k+1} \text{ if } \frac{f(x_k) - f(y_{k+1})}{m_k(x_k) - m_k(y_{k+1})} > \eta, \\ x_k \text{ otherwise,} \end{cases}$$
(1.4)

where $\eta \in (0, 1/4)$ is fixed. Note that rejecting the update does not imply that the algorithm will stall, because we can still shrink the trust region so that $y_{k+2} \neq y_{k+1}$.

1.2. Updating the Trust Region. The easiest way to define a trust region R_k is to choose the closed ball of radius Δ_k around x_k in some norm $\|\cdot\|$,

$$R_k = \{ x \in \mathbb{R}^n : \| x - x_k \| \le \Delta_k \}.$$

For simplicity, we will assume that $\|\cdot\|$ is the Euclidean norm. Δ_k is called the *trust* region radius.

In order to define a new trust region R_{k+1} around x_{k+1} , it suffices to fix a rule on how to select Δ_{k+1} . The following rule is a popular choice, where y_{k+1} is as in Section 1.1,

$$\Delta_{k+1} = \begin{cases} \frac{\Delta_k}{4} & \text{if } \frac{f(x_k) - f(y_{k+1})}{m_k(x_k) - m_k(y_{k+1})} < \frac{1}{4}, \\ \min(2\Delta_k, \Delta_{\max}) & \text{if } \frac{f(x_k) - f(y_{k+1})}{m_k(x_k) - m_k(y_{k+1})} > \frac{3}{4}, \\ \Delta_k & \text{otherwise.} \end{cases}$$
(1.5)

The rule is designed so that Δ_k never exceeds Δ_{\max} , and it is motivated by comparing the objective function decrease $f(x_k) - f(y_{k+1})$ with the decrease $m_k(x_k) - m_k(y_{k+1})$ "promised" by the model function:

- If the actual decrease was below our expectations, this indicates that m_k should be regarded as a more local model than before. We thus find a reasonable Δ_{k+1} by shrinking Δ_k .
- If the actual decrease was above our expectations, we feel confident to expand the trust region by selecting Δ_{k+1} as an expansion of Δ_k .
- If there is neither reason for gloom nor euphoria, we stick to the previous value $\Delta_{k+1} = \Delta_k$.

1.3. The Algorithm. By now we assembled the necessary elements to formulate a generic trust region algorithm:

ALGORITHM 1.1 (Generic Trust region Method).

S0 Choose $\Delta_{\max} > 0$, $\Delta_0 \in (0, \Delta_{\max})$, $\eta \in (0, 1/4)$, $x_0 \in \mathbb{R}^n$, B_0 , $\epsilon > 0$. **S1** While $\|\nabla f(x_k)\| \ge \epsilon$ repeat Compute y_{k+1} as the approximate minimiser of (1.2). Determine x_{k+1} via (1.4). Compute Δ_{k+1} using (1.5). Build a new model function $m_{k+1}(x)$. $k \leftarrow k+1$. end **S2** Return x_k .

2. The Cauchy Point. In step S1 of the algorithm, the approximate minimiser y_{k+1} can be computed in many different ways. Some of these methods will be discussed in Lecture 7. We intend to use the remaining part of the present section to derive a rather general convergence result for Algorithm 1.1, see Section 3 below. For this to work out, we need to assume that the method chosen for computing y_{k+1} compares favourably to a specific benchmark, the so-called *Cauchy point*. This point is obtained when a steepest descent line-search is applied to m_k at x_k and is restricted to R_k .

An unrestricted line-search in the direction $-\nabla f(x_k)$ yields the step-length multiplier

$$\begin{aligned} \alpha_k^u &:= \arg\min_{\alpha \ge 0} m_k (x_k - \alpha \nabla f(x_k)) \\ &= \arg\min_{\alpha \ge 0} f(x_k) - \alpha \nabla f(x_k)^{\mathrm{T}} \nabla f(x_k) + \frac{\alpha^2}{2} \nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k) \\ &= \begin{cases} +\infty \text{ if } \nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k) \le 0, \\ \frac{\nabla f(x_k)^{\mathrm{T}} \nabla f(x_k)}{\nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k)} \text{ otherwise.} \end{cases} \end{aligned}$$

If we want to stay within R_k we have to "clip" α_k^u to a constrained step-length multiplier α_k^c . Note that $\alpha \mapsto m_k(x_k - \alpha \nabla f(x_k))$ is strictly decreasing on $[0, \alpha_k^u)$. Moreover, the radius $||x_k - \alpha \nabla f(x_k)||$ is strictly increasing over the same interval. Therefore, the correct clipping rule is given by

$$\alpha_k^c = \min\left(\frac{\Delta_k}{\|\nabla f(x_k)\|}, \alpha_k^u\right) \tag{2.1}$$

and $y_k^c := x_k - \alpha_k^c \nabla f(x_k)$ is the Cauchy point of the trust region subproblem (1.2).

3. Global Convergence of Trust Region Algorithms. Next we will show that Algorithm 1.1 converges globally.

THEOREM 3.1. Let Algorithm 1.1 be applied to the minimisation of $f \in C^2(\mathbb{R}^n, \mathbb{R})$, and for all k let y_{k+1} be computed such that $m_k(y_{k+1}) \leq m_k(y_k^c)$ holds. Let there exist $\beta > 0$ such that for all k, $||B_k||, ||D^2f(x_k)|| \leq \beta$, and finally, let $\Delta_0 \geq \epsilon/(14\beta)$. Then exactly one of two following alternatives occurs:

- (i) The algorithm does not terminate, but $\lim_{k\to\infty} f(x_k) = -\infty$ and f is unbounded below.
- (ii) The algorithm terminates in finite time, returning an approximate minimiser.

Proof. If $\|\nabla f(x_k)\| < \epsilon$ occurs for some $k \in \mathbb{N}$ then we are in case (ii) and nothing needs to be proven. We may therefore assume that $\|\nabla f(x_k)\| \ge \epsilon$ for all k, and it remains to show that this assumption implies $f(x_k) \to -\infty$.

Claim 1: The update is accepted, i.e., $x_{k+1} = y_{k+1}$ in (1.4), for infinitely many k. Claim 2: Whenever $x_{k+1} = y_{k+1}$ occurs, we have $f(x_{k+1}) - f(x_k) \leq -\eta \epsilon^2/(28\beta)$. Claim 1 follows from Proposition 3.2 below; for Claim 2 see Problem Set 3. It follows from these two claims that

$$\lim_{k \to \infty} f(x_k) = \sum_{k=0}^{\infty} f(x_{k+1}) - f(x_k) = -\infty,$$

since (1.4) guarantees that the series on the right hand side contains only nonpositive terms. \square

We now set out to showing the validity of Claim 1. Intuitively it is clear that when $\|\nabla f(x_k)\|$ is bounded below and Δ_k becomes sufficiently small, then $f(y_{k+1}) - f(x_k) \approx m_k(y_{k+1}) - m_k(x_k)$ should hold. Indeed, in Lemma 3.5 below we will show that $\|\nabla f(x_k)\| \geq \epsilon$ and $\Delta_k < 2\epsilon/(7\beta)$ imply

$$\frac{f(y_{k+1}) - f(x_k)}{m_k(y_{k+1}) - m_k(x_k)} > \frac{1}{4}.$$
(3.1)

Claim 1 then follows immediately from the following result:

PROPOSITION 3.2. There are at most $\lfloor \log_4 \frac{\Delta_{\max} 7\beta}{2\epsilon} \rfloor$ rejected updates between successive accepted updates.

Proof. Suppose to the contrary that all updates y_{k+1} for $k = k_0, k_0 + 1, \ldots, k_0 + \lceil \log_4 \frac{\Delta_{\max} 7\beta}{2\epsilon} \rceil =: k_1$ are rejected. Then

$$\Delta_{k_1} = \Delta_{k_0} 4^{-(k_1 - k_0)} \le \frac{2\epsilon}{7\beta},$$

and (3.1) contradicts our assumption that that y_{k_1+1} is rejected.

It remains to prove (3.1). We divide the argument into several lemmas.

LEMMA 3.3. Let $\|\nabla f(x_k)\| \ge \epsilon$ and $\Delta_k < \epsilon/\beta$. Then

$$y_k^c = x_k - \frac{\Delta_k}{\|\nabla f(x_k)\|} \nabla f(x_k).$$
(3.2)

Proof. If $\nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k) \leq 0$ then (3.2) holds because of (2.1). So, we may assume that $\nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k) > 0$, and then

$$\Delta_k < \frac{\epsilon}{\beta} < \frac{\|\nabla f(x_k)\|}{\beta} = \frac{\|\nabla f(x_k)\|^3}{\beta \|\nabla f(x_k)\|^2} \le \frac{\|\nabla f(x_k)\|^3}{\nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k)},$$

But this implies that

$$\frac{\Delta_k}{\|\nabla f(x_k)\|} < \frac{\nabla f(x_k)^{\mathrm{T}} \nabla f(x_k)}{\nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k)}.$$

The result now follows from (2.1).

LEMMA 3.4. Let $\|\nabla f(x_k)\| \ge \epsilon$ and $\Delta_k < \epsilon/(2\beta)$. Then

$$\nabla f(x_k)^{\mathrm{T}}(y_{k+1} - x_k) \le -\frac{\Delta_k \|\nabla f(x_k)\|}{2}.$$

Proof. The relation $\Delta_k < \frac{\epsilon}{2\beta} \leq \frac{\|\nabla f(x_k)\|}{2\beta}$ implies that

$$-\Delta_k \|\nabla f(x_k)\| + \Delta_k^2 \beta \le -\frac{\Delta_k \|\nabla f(x_k)\|}{2}.$$
(3.3)

Moreover, by Lemma 3.3, $\Delta_k < \frac{\epsilon}{2\beta} < \frac{\epsilon}{\beta}$ implies $y_k^c = x_k - \frac{\Delta_k}{\|\nabla f(x_k)\|} \nabla f(x_k)$, and hence,

$$m_k(y_k^c) = f(x_k) - \Delta_k \|\nabla f(x_k)\| + \frac{\Delta_k^2}{2} \frac{\nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k)}{\|\nabla f(x_k)\|^2}$$
(3.4)

The assumption $m_k(y_{k+1}) \leq m_k(y_k^c)$ from Theorem 3.1 implies

$$f(x_k) + \nabla f(x_k)^{\mathrm{T}}(y_{k+1} - x_k) + \frac{1}{2}(y_{k+1} - x_k)^{\mathrm{T}}B_k(y_{k+1} - x_k) \stackrel{(3.4)}{\leq} f(x_k) - \Delta_k \|\nabla f(x_k)\| + \frac{\Delta_k^2}{2} \frac{\nabla f(x_k)^{\mathrm{T}}B_k \nabla f(x_k)}{\|\nabla f(x_k)\|^2},$$

so that

$$\nabla f(x_k)^{\mathrm{T}}(y_{k+1} - x_k)$$

$$\leq -\Delta_k \|\nabla f(x_k)\| + \frac{\Delta_k^2}{2} \frac{\nabla f(x_k)^{\mathrm{T}} B_k \nabla f(x_k)}{\|\nabla f(x_k)\|^2} - \frac{1}{2} (y_{k+1} - x_k)^{\mathrm{T}} B_k (y_{k+1} - x_k)$$

$$\leq -\Delta_k \|\nabla f(x_k)\| + \Delta^2 \beta$$

$$\stackrel{(3.3)}{\leq} -\frac{\Delta_k \|\nabla f(x_k)\|}{2}.$$

LEMMA 3.5. Let $\|\nabla f(x_k)\| \ge \epsilon$ and $\Delta_k < 2\epsilon/(7\beta)$. Then

$$\frac{f(y_{k+1}) - f(x_k)}{m_k(y_{k+1}) - m_k(x_k)} > \frac{1}{4}.$$

Proof. We have

$$\Delta_{k} < \frac{2\epsilon}{7\beta} \leq \frac{2\|\nabla f(x_{k})\|}{7\beta} \Rightarrow \beta \Delta_{k} < \frac{\|\nabla f(x_{k})\|}{4} + \frac{\beta \Delta_{k}}{8}$$
$$\Rightarrow \frac{\beta \Delta_{k}}{\|\nabla f(x_{k})\| + \frac{1}{2}\beta \Delta_{k}} < \frac{1}{4}$$
$$\Rightarrow \frac{\frac{1}{2}\|\nabla f(x_{k})\|\Delta_{k} - \frac{1}{2}\beta \Delta_{k}^{2}}{\|\nabla f(x_{k})\|\Delta_{k} + \frac{1}{2}\beta \Delta_{k}^{2}} = \frac{1}{2} - \frac{\beta \Delta_{k}}{\|\nabla f(x_{k})\| + \frac{1}{2}\beta \Delta_{k}} > \frac{1}{4}. \quad (3.5)$$

On the other hand, since $\Delta_k < 2\epsilon/7\beta < \epsilon/2\beta$, Lemma 3.3 shows that

$$0 < m_k(x_k) - m_k(y_{k+1}) = \nabla f(x_k)^{\mathrm{T}}(x_k - y_{k+1}) - \frac{1}{2}(y_{k+1} - x_k)^{\mathrm{T}}B_k(y_{k+1} - x_k)$$
$$\leq \nabla f(x_k)^{\mathrm{T}}(x_k - y_{k+1}) + \frac{1}{2}\beta\Delta_k^2 \leq \|\nabla f(x_k)\|\Delta_k + \frac{1}{2}\beta\Delta_k^2.$$

Furthermore, applying the mean value theorem (twice), we find

$$f(x_k) - f(y_{k+1}) = \nabla f(x_k)^{\mathrm{T}} (x_k - y_{k+1}) - \frac{1}{2} (y_{k+1} - x_k)^{\mathrm{T}} H(y_{k+1} - x_k),$$

where $H = D^2 f(z)$ for some $z \in \operatorname{conv}(x_k, y_{k+1}) \subset R_k$. Lemma 3.4 therefore implies

$$f(x_k) - f(y_{k+1}) \ge \nabla f(x_k)^{\mathrm{T}}(x_k - y_{k+1}) - \frac{1}{2}\beta \Delta_k^2 \ge \frac{1}{2} \|\nabla f(x_k)\| \Delta_k - \frac{1}{2}\beta \Delta_k^2.$$

Therefore,

$$\frac{f(x_k) - f(y_{k+1})}{m_k(x_k) - m_k(y_{k+1})} \ge \frac{\frac{1}{2} \|\nabla f(x_k)\| \Delta_k - \frac{1}{2} \beta \Delta_k^2}{\|\nabla f(x_k)\| \Delta_k + \frac{1}{2} \beta \Delta_k^2} \stackrel{(3.5)}{>} \frac{1}{4}.$$