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1. Variants of Trust-Region Methods. The generic trust region method we
introduced in Lecture 6 is a fairly general algorithmic framework:

(i) Although we made a specific choice for defining and updating the trust region
Rk, other choices are possible, for example by considering balls in the norms
‖ · ‖1 or ‖ · ‖∞. We will not pursue this matter further.

(ii) There is freedom in the choice of the model function mk. We chose to inves-
tigate only quadratic model functions whose linear part coincides with the
first order Taylor approximation of f , but this leaves many possibilities for
choosing the matrix Bk. We discuss this issue in Section 2 below.

(iii) The point yk+1 should be obtained via an approximate solution of the trust
region subproblem

min
y∈Rk

mk(y). (1.1)

Theorem 1.2 of Lecture 6 shows that it is desirable to choose an approximate
computation that uses the Cauchy point as a benchmark, but other than that
there is complete freedom in choosing a method for this computation. Two
of the most widely used methods in this context are the dogleg method of
Section 3.1 and Steihaug’s method of Section 3.2.

2. Choice of the model function. Let us discuss a few methods for choosing
the matrix Bk that determines the model function

mk(x) = f(xk) + ∇f(xk)T(x − xk) +
1

2
(x − xk)TBk(x − xk).

2.1. Trust-Region Newton Methods. If the problem dimension is not too
large, the choice

Bk = D2f(xk)

is reasonable and leads to a model function mk that is simply the second order Taylor
approximation of the objective function f around the current iterate xk. Methods
based on this choice of model function are called trust-region Newton methods.

It is important to understand that trust-region Newton methods are not simply
the Newton-Raphson method with an additional step-size restriction. In fact, trust-
region Newton methods overcome most of the unwanted aspects of the dynamical
behaviour of the Newton-Raphson method while retaining all its advantages with re-
gards to convergence speed:

(i) In the neighbourhood of a saddle point or a local maximiser x∗ of f , the
Newton-Raphson method is attracted to x∗. This is unwanted, because x∗

is a spurious solution of the minimisation problem min f(x). Trust-region
Newton methods are not attracted to such solutions because the trust-region
framework ensures that the sequence (f(xk))N is decreasing.
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(ii) The Newton-Raphson update xk+1 = xk − D2f(xk)−1∇f(xk) is not defined
when the Hessian D2f(xk) is singular. However, the trust-region subproblem
(1.1) is still well-defined and yk+1 can be computed.

(iii) Even in situations where the Newton-Raphson update xk+1 is well-defined
and f(xk+1) < f(xk), yk+1 may still differ from xk+1 because xk+1 can lie
outside the trust region Rk.

(iv) When xk enters a sufficiently small neighbourhood of a local minimiser x∗ of
f where D2f(x∗) � 0, the updates xk+1, . . . generated by trust-region New-
ton methods start coinciding with those produced by the Newton-Raphson
method. The two approaches have therefore the same asymptotic conver-
gence rate which is Q-quadratic.

2.2. Quasi-Newton Trust-Region Methods. When the problem dimension
n is large, the natural choice for the model function mk is to use quasi-Newton updates
for the approximate Hessians Bk. The only difference is that xk+1 is now obtained by
approximately solving the trust region subproblem (1.1) rather than by a line-search.
Again, these methods are qualitatively different from the corresponding quasi-Newton
line-search methods:

(i) When Bk is updated using the SR1 rule (see Lecture 4), it is not guaranteed
to be positive definite for all k. This poses a problem for the SR1 line-search
method that depends on solving the linear system Bkdk = −∇f(xk), because
dk may fail to be a descent direction or Bk may be nearly singular. In contrast,
the SR1 trust-region method is not affected by this, because the trust-region
subproblem (1.1) is still well defined and an approximate minimiser yk+1 can
be obtained via Steihaug’s method (see Section 3.2).

(ii) When xk enters a sufficiently small neighbourhood of a local minimiser x∗

of f , the output sequences produced by quasi-Newton trust-region methods
and their line-search counterparts again start coinciding, and the asymptotic
convergence rate is Q-superlinear for both approaches.

Note: (i) shows that while there are good reasons to prefer BFGS to SR1 updates
in line-search methods, there is no such obvious choice when it comes to quasi-Newton
trust-region methods. In fact, when the approximate solver of the trust-region sub-
problem does not depend on Bk to be positive definite, SR1 updates are preferable
because they are allowed to become indefinite and can model the true Hessian D2f(xk)
better. Moreover, they are cheaper to evaluate.

3. Solving the Trust-Region Subproblem. In this section we will discuss
two of the most widely used methods for computing an approximate minimiser yk+1

of the trust-region subproblem (1.1).

3.1. The Dogleg Method. This method is very simple and cheap to compute,
but it works only when Bk is positive definite. Therefore, when this approach is used
in connection with quasi-Newton trust-region methods, BFGS updates for Bk are a
good choice, but SR1 updates are not.

The method is motivated as follows: consider the exact solution of the trust region
subproblem as a function of the trust region radius,

x(∆) = arg min
{x∈Rn:‖x−xk‖≤∆}

mk(x). (3.1)
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If Bk � 0 then ∆ 7→ x(∆) describes a curvilinear path from x(0) = xk to the exact
minimiser of the unconstrained problem minx∈Rn mk(x), that is, to the quasi-Newton
point

y
qn
k = xk − B−1

k ∇f(xk). (3.2)

Moreover, we have x(∆) = y
qn
k for all ∆ ≥ ‖yqn

k − xk‖, see Lemma 3.1 (iii) below.

The dogleg idea is to replace the curvilinear path ∆ 7→ x(∆) by a polygonal path
τ 7→ y(τ) and to determine yk+1 as the minimiser of mk(y) among the points on the
path {y(τ) : τ ≥ 0}. That is, yk+1 = y(τk), where τk = arg minτ≥0 mk(y(τ)). We call
yk+1 the dogleg minimiser.

The simplest and most interesting version of such a method works with a polygon
consisting of just two line segments, which reminds some people of the leg of a dog.
The “knee” of this leg is located at the steepest descent minimiser yu

k = xk−αu
k∇f(xk),

where αu
k is defined as in Lecture 6. Note that unless xk is a stationary point, we

have ∇f(xk)TBk∇f(xk) > 0, and hence

yu
k = xk −

‖∇f(xk)‖2

∇f(xk)TBk∇f(xk)
∇f(xk), (3.3)

as shown in Lecture 6. From yu
k the dogleg path continues along a straight line segment

to the quasi-Newton minimiser y
qn
k , see Figures 3.1 and 3.2
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Fig. 3.1. The dogleg path in the case where yk+1 lies on the first section of the leg.

The dogleg path is thus described by

y(τ) =

{

xk + τ(yu
k − xk) for τ ∈ [0, 1],

yu
k + (1 − τ)(yqn

k − yu
k ) for τ ∈ [1, 2].

(3.4)

This choice of path is motivated in part by the following lemma.

Lemma 3.1. If Bk is positive definite symmetric, then

i) the model function mk is strictly decreasing along the path y(τ),
ii) ‖y(τ) − xk‖ is strictly increasing along the path y(τ),
iii) if ∆ ≥ ‖B−1

k ∇f(xk)‖ then y(∆) = y
qn
k ,

iv) if ∆ ≤ ‖B−1
k ∇f(xk)‖ then ‖y(∆) − xk‖ = ∆,

v) the two paths x(∆) and y(τ) have first order contact at xk, that is, the deriva-
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Fig. 3.2. The dogleg path in the case where yk+1 lies on the second section of the leg.

tives at ∆ = 0 are colinear:

lim
∆→0+

x(∆) − xk

∆
= −

∇f(xk)

‖∇f(xk)‖
∼

−‖∇f(xk)‖2

∇f(xk)TBk∇f(xk)
∇f(xk)

= lim
τ→0+

y(τ) − y(0)

τ
.

Proof. See Problem Set 4.

Parts i) and ii) of the Lemma show that the dogleg minimiser yk+1 is easy to
compute: if y

qn
k ∈ Rk then yk+1 = y

qn
k , and otherwise yk+1 is the unique intersection

point of the dogleg path with the boundary of Rk, see Figures 3.1 and 3.2. The dogleg
calculation of yk+1 can thus be summed up as follows:

Algorithm 3.2 (Dogleg).

compute yu
k as in (3.3)

if ‖yu
k − xk‖ ≥ ∆k stop with yk+1 = xk + ∆k

‖yu
k
−xk‖

(yu
k − xk) (*)

compute y
qn
k as in (3.2)

if ‖yqn
k − xk‖ ≤ ∆k stop with yk+1 = y

qn
k

else begin
find τ∗ s.t. ‖yu

k + τ∗(yqn
k − yu

k ) − xk‖ = ∆k

stop with yk+1 = yu
k + τ∗(yqn

k − yu
k )

end

If the algorithm stops in (*) then the dogleg minimiser lies on the first part of
the leg and equals the Cauchy point. Otherwise the dogleg minimiser lies on the
second part of the leg and is better than the Cauchy point. Therefore, we have
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mk(yk+1) ≤ mk(yc
k) in both cases, and Theorem 3.1 of Lecture Note 6 can be applied.

3.2. Steihaug’s Method. This is the most widely used method for the ap-
proximate solution of the trust-region subproblem. The method works for quadratic
models mk defined by an arbitrary symmetric Bk. Positive definiteness is therefore
not required and SR1 updates can be used for Bk.

One of the strengths of the dogleg method is that the method takes the quasi-
Newton step yk+1 = y

qn
k when y

qn
k lies in the trust region. If Bk converges to

D2f(x∗) � 0 as xk approaches a strict local minimiser x∗ of f , this allows (xk)N

to converge Q-superlinearly. Steihaug’s method is designed to inherit this desirable
property. However, when Bk is not positive definite, it is not necessarily desireable
to move to y

qn
k because mk(yqn

k ) might be larger than mk(xk) = f(xk). Steihaug’s
method overcomes this problem as follows:

• Draw the polygon traced by the iterates xk = z0, z1, . . . , zj , . . . obtained
by applying the conjugate gradient algorithm to the minimisation of the
quadratic function mk(x) for as long as the updates are defined, i.e., as long
as dT

j Bkdj > 0.

• This terminates in the quasi-Newton point zn = y
qn
k , unless dT

j Bkdj ≤ 0. In
the second case, continue to draw the polygon from zj to infinity along dj , as
mk can be pushed to −∞ along that path.

• Minimise mk along this polygon and select yk+1 as the minimiser.

The polygon is constructed so that mk(z) decreases along its path, while Theorem
3.4 below shows that ‖z − xk‖ increases. Therefore, if the polygon ends at zn ∈ Rk

then yk+1 = zn, and otherwise yk+1 is the unique point where the polygon crosses
the boundary ∂Rk of the trust region. Stated more formally, Steighaug’s method
proceeds as follows:

Algorithm 3.3 (Steihaug).

S0 Initialisation:
choose tolerance parameter ε > 0
set z0 = xk, d0 = −∇mk(xk)

S1 For j = 0, . . . , n − 1 repeat
if dT

j Bkdj ≤ 0 begin
find τ∗ ≥ 0 s.t. ‖zj + τ∗dj − xk‖ = ∆k

stop with yk+1 = zj + τ∗dj

end
else begin

find τj := arg minτ≥0 mk(zj + τdj)
set zj+1 := zj + τjdj

if ‖zj+1 − xk‖ ≥ ∆k begin
find τ∗ ≥ 0 s.t. ‖zj + τ∗dj − xk‖ = ∆k

stop with yk+1 = zj + τ∗dj

end
if ‖∇mk(zj+1)‖ ≤ ε stop with yk+1 = zj+1 (*)

else compute dj+1 = −∇mk(zj+1) +
‖∇mk(zj+1)‖

2

‖∇mk(zj)‖2 dj

end
end
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Algorithm 3.3 stops with yk+1 = zn in iteration n − 1 at the latest, since in this
case dT

j Bkdj > 0 for j = 0, . . . , n−1 and this implies that Bk � 0. Furthermore, since
d0 = −∇mk(xk) = −∇f(xk), the algorithm stops at the Cauchy point yk+1 = yc

k if
it stops in iteration 0, and if it stops later then mk(yk+1) < mk(yc

k). Therefore, The-
orem 3.1 of Lecture Note 6 is applicable.

Theorem 3.4. Let the conjugate gradient algorithm be applied to the minimi-
sation of mk(x) with starting point z0 = xk, and suppose that dT

j Bkdj > 0 for
j = 0, . . . , i. Then we have 0 = ‖z0 − xk‖ ≤ ‖z1 − xk‖ ≤ · · · ≤ ‖zi − xk‖.

Proof. The restriction of Bk to span{d0, . . . , di} is a positive definite operator,

(

i
∑

j=0

λjdj

)T
Bk

(

i
∑

j=0

λjdj

)

=

i
∑

j=0

λ2
jd

T
j Bkdj > 0,

where we used the Bk-conjugacy property dT
j Bkdl = 0 ∀ j 6= l. Therefore, up to

iteration i all the properties we derived for the conjugate gradient algorithm are
valid. Since zj − xk =

∑j−1
l=0 τldl for (j = 1, . . . , i), we have

‖zj+1 − xk‖
2 = ‖zj − xk‖

2 +

j−1
∑

l=0

τjτld
T
j dl.

Moreover, τj > 0 for all j. Therefore, it suffices to show that dT
j dl > 0 for all l ≤ j.

For j = 0 this is trivially true. We can thus assume that the claim holds for j − 1 and
proceed by induction. For l < j have

dT
j dl = −∇mk(zj)

Tdl +
‖∇mk(zj)‖

2

‖∇mk(zj−1)‖2
dT

j−1dl.

The second term on the right-hand side is positive because of the induction hypothesis,
and it was established in the proof of Lemma 2.3 from Lecture 5 that the first term
is zero. Furthermore, if l = j then we have of course dT

j dl > 0.
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