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1. Constrained Optimisation and the Need for Optimality Conditions.

In the remaining part of this course we will consider the problem of minimising ob-
jective functions over constrained domains. The general problem of this kind can be
written in the form

min
x∈Rn

f(x)

s.t. gi(x) = 0 (i ∈ E),

gj(x) ≥ 0 (i ∈ I),

where E and I are the finite index sets corresponding to the equality and inequality
constraints, and where f, gi ∈ Ck(Rn, R) for all (i ∈ I ∪ E).

In unconstrained optimisation we found that we can use the optimality conditions
derived in Lecture 1 to transform optimisation problems into zero-finding problems
for systems of nonlinear equations. We will spend the next few lectures to develop a
similar approach to constrained optimisation: in this case the optimal solutions can
be characterised by systems of nonlinear equations and inequalities.

A natural by-product of this analysis will be the notion of a Lagrangian dual
of an optimisation problem: every optimisation problem - called the primal - has a
sister problem in the space of Lagrange multipliers - called the dual. In constrained
optimisation it is often advantageous to think of the primal and dual in a combined
primal-dual framework where each sheds light from a different angle on a certain
saddle-point finding problem.

2. The Fundamental Theorem of Linear Inequalities. Before we proceed
to developing these theories, we will take a closer look at systems of linear inequalities
and prove a theorem that will be of fundamental importance in everything that follows:

Theorem 2.1 (Fundamental theorem of linear inequalities).
Let a1, . . . , am, b ∈ R

n be a set of vectors. Then exactly one of the two following
alternatives occurs:

(I) ∃y ∈ R
m
+ such that b =

∑m

i yiai.
(II) ∃d ∈ R

n such that dTb < 0 and dTai ≥ 0 for all (i = 1, . . . , m).

Note that Alternative (I) says that b lies in the convex cone generated by the
vectors ai:

b ∈ cone(a1, . . . , am) :=

{

n
∑

i=1

λiai : λi ≥ 0 ∀i

}

.

Alternative (II) on the other hand says that the hyperplane d⊥ := {x ∈ R
n : dTx = 0}

strictly separates b from the convex set cone(a1, . . . , am). Thus, Theorem 2.1 is a re-
sult about convex separation: either b is a member of cone(a1, . . . , am) or there exists
a hyperplane that strictly separates the two objects. See Figure 2.1 for an illustration
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of the two cases.
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Fig. 2.1. Illustration of the two alternative situations described by Theorem 2.1, where C =
cone(a1 , . . . , am). On the left, Alternative (II) is depicted, and on the right, Alternative (I).

Actually, our proof of Theorem 2.1 will reveal the slightly stronger property that
when alternative (II) holds then d can be chosen so that dTai = 0 for at least
rank(a1, . . . , am) − 1 indices i, a result that is useful in the theory of linear pro-
gramming. We break down the proof of Theorem 2.1 into a series of lemmas:

Lemma 2.2. The two alternatives of Theorem 2.1 are mutually exclusive.

Proof. If this is not the case then we find the contradiction

0 ≤
m
∑

i=1

yi(d
Tai) = dT

(

m
∑

i=1

yiai

)

= dTb < 0.

Lemma 2.3. W.l.o.g. we may assume that span{a1, . . . , am} = R
n.

Proof. If span{a1, . . . , am} 6= R
n then either b ∈ span{a1, . . . , am} and then we

can restrict all arguments of the proof to the linear subspace span{a1, . . . , am} of R
n.

Else, if b /∈ span{a1, . . . , am} then b cannot be written in the form b =
∑m

i µiai, so
Alternative (I) does not hold. It remains to show that Alternative (II) applies in this
case. Let π be the the orthogonal projection of R

n onto span{a1, . . . , am}, and let
d = π(b) − b. Then d ⊥ span{a1, . . . , am}, so that

dTb = dT(b − π(b)) + dTπ(b) = −‖d‖2 + 0 < 0,

dTai = 0 ∀ i.

Therefore, Alternative (II) holds.

Because of Lemma 2.3, we will henceforth assume that span{a1, . . . , am} = R
n.

We will next construct an algorithm that stops when a situation corresponding to
either Alternative (I) or (II) is detected.
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Algorithm 2.4.
S0 Choose J1 ⊆ {1, . . . , m} such that span{ai}J1 = R

n, |J1| = n.
S1 For k = 1, 2, . . . repeat

1. decompose b =
∑

i∈Jk yk
i ai

2. if yk
i ≥ 0 ∀i ∈ Jk return yk and stop.

3. else begin
let jk := min{i ∈ Jk : yk

i < 0}
let πk : R

n → span{ai : i ∈ Jk \ {jk}} orthogonal projection
let dk := ‖ajk − πk(ajk )‖−1(ajk − πk(ajk ))
if (dk)Tai ≥ 0 for (i = 1, . . . , m) return dk and stop.

end
4. let lk := min{i : (dk)Tai < 0

}

5. let Jk+1 := Jk \ {jk} ∪ {lk}
end.

Algorithm 2.4 is in fact the simplex algorithm for LP with Bland’s rule in dis-
guised form. Let us make a few remarks about the different stages of the algorithm:

• If the algorithm returns yk in Step 2, then Alternative (I) holds: let yi = 0
for i 6= Jk and yi = yk

i for i ∈ J . Then y ∈ R
m
+ and b =

∑

i yiai.
• If the algorithm enters Step 3, then {i ∈ Jk : yk

i < 0} 6= ∅ because the
condition of Step 2 is not satisfied.

• The vector dk constructed in Step 3 satisfies

(dk)Tb =
∑

i∈Jk

yk
i (dk)Tai = yk

jk (dk)Tajk < 0, (2.1)

Therefore, if the algorithm returns dk then Alternative (II) holds with d = dk.
• If the algorithm enters Step 4 then {i : (dk)Tai < 0

}

6= ∅ because the
condition of the last “if” statement of Step 3 is not satisfied. Moreover, since

(dk)Tajk = 1,

(dk)Tai = 0 (i ∈ Jk \ {jk}),

we have {i : (dk)Tai < 0
}

∩ Jk = ∅. This shows that lk /∈ Jk.
• We have span{ai : i ∈ Jk+1} = R

n, because (dk)Talk 6= 0 and (dk)Tai = 0
(i ∈ Jk\{jk}) show that alk /∈ span{ai : i ∈ Jk\{jk}}. Moreover, |Jk+1| = n.

Lemma 2.5. In Algorithm 2.4 it can never occur that Jk = J t for k < t.

Proof. Let us assume to the contrary that Jk = J t for some iterations k < t. Let
jmax := max{js : k ≤ s ≤ t − 1}. Then there exists p ∈ {k, k + 1, . . . , t − 1} such
that jmax = jp. Since Jk = J t, there also exists q ∈ {k, k + 1, . . . , t − 1} such that
jmax = lq. In other words, the index must have once left J and then reentered, or
else it must have entered and then left again.

Now jmax = jp implies that for all i ∈ Jp such that i < jmax we have yp
i ≥ 0.

Likewise, for the same indices i we have (dq)Tai ≥ 0, as

i < jmax = lq = min{i : (dq)Tai < 0}.
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Furthermore, we have yp
jmax = yp

jp < 0 and (dq)Tajmax = (dq)Talq < 0. And finally,

since Js ∩ {jmax + 1, . . . , m} remains unchanged for s = k, . . . , t we have (dq)Tai = 0
for all i ∈ Jp such that i > jmax. Therefore,

(dq)Tb =
∑

i∈Jp

yp
i (dq)Tai ≥ 0. (2.2)

On the other hand, (2.1) shows (dq)Tb < 0, contradicting (2.2). Thus, indices k < t
such that Jk = J t do not exist.

We are finally ready to prove Theorem 2.1:

Proof. Since Jk ⊆ {1, . . . , m} and there are finitely many choices for these index
sets and Lemma 2.5 shows that there are no repetitions in the sequence J 1, J2, . . . ,
the sequence must be finite. But this is only possible if in some iteration k Algorithm
2.4 either returns yk, detecting that Alternative (I) holds, or dk, detecting that Al-
ternative (II) holds.

3. The Implicit Function Theorem. Another fundamental tool we will need
is the implicit function theorem. This is a standard results from multivariate analysis
and can be proven via a rather technical fixed point argument. For a proof see any ad-
vanced calculus book. Before stating the theorem, let us illustrate it with an example:

Example 3.1. The function f(x1, x2) = x2
1 +x2

2 − 1 has a zero at the point (1, 0)
and ∂

∂x1

f(1, 0) = 1 6= 0. In a neighbourhood of this point the level set {(x1, x2) :
f(x1, x2) = 0} can be explicitly parameterised in terms of x2, that is, there exists a
function h(t) such that f(x1, x2) = 0 if and only if (x1, x2) = (h(t), t) for some value
of t.

Indeed, this level set is nothing else but the unit circle S1, and for (x1, x2) with
x1 > 0 we have f(x1, x2) = 0 if and only if x1 = h(x2) where h(t) =

√
1 − t2. Thus,

S1 ∩ {x ∈ R
2 : x1 > 0} = {(h(t), t) : t ∈ (−1, 1)},

as claimed. Another way to say this is that S1 is a differentiable manifold with local
coordinate map

ϕ : S1 ∩ {x ∈ R
2 : x1 > 0} → (−1, 1),

x 7→ x2.

The parameterisation in terms of x2 was only possible because ∂
∂x1

f(1, 0) 6= 0. To

illustrate this, note that we also have f(0, 1) = 0, but now ∂
∂x1

f(0, 1) = 0 and we

cannot parameterise S1 by x2 in a neighbourhood of (0, 1). In fact, in a neighbourhood
of x2 = 1, there are two x1 values ±

√

1 − x2
2 such that f(x1, x2) = 0 when x2 < 1

and none when x2 > 0.
These observations can be generalised. For another 2D example, see Figure 3.1.

To describe the general case, for f ∈ Ck(Rp+q , Rp), let f ′
B(x) be the leading p × p

block of the Jacobian matrix f ′(x) = [ f ′

B(x) f ′

N (x) ], and f ′
N(x) the trailing p×q block.

Let xB be the first p × 1 block of the vector x and xN the trailing q × 1 block. The

4



following theorem generalises the above made observations:

Theorem 3.2. [Implicit Function Theorem]
Let f ∈ Ck(Rp+q , Rp) and let x̄ ∈ R

p+q be such that f(x̄) = 0 and f ′
B(x̄) nonsingular.

Then there exist open neighbourhoods UB ⊂ R
p of x̄B and UN ⊂ R

q of x̄N and a
function h ∈ Ck(UN , UB) such that for all (xB , xN ) ∈ UB × UN ,

i) f(xB , xN ) = 0 ⇔ xB = h(xN ),
ii) f ′

B(x) is nonsingular,

iii) h′(xN ) = − (f ′
B(x))

−1
f ′

N(x).
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Fig. 3.1. The first window shows the Matlab built-in sample function peaks(30) and some of its
level sets. The second window shows the level sets corresponding to the level zero. Windows 3 and
4 are zooms of window 2. In the domain of window 3 the x-coordinate can be used to locally express
the level set as the graph of a function y = y(x). In the domain of window 4 this is not possible.
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