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1. Optimality Conditions: What We Know So Far. In Lecture 2 we
showed that ∇f(x) = 0 and D2f(x) � 0 are necessary optimality conditions for
unconstrained optimisation, and we found that the stronger conditions ∇f(x) = 0,
D2f(x) � 0 are sufficient in guaranteeing that x is a strict local minimiser. In effect,
sufficiency occurs because D2f(x) � 0 guarantees that f is locally strictly convex.
Indeed, if convexity of f is a given, we can neglect second derivatives altogether, as
∇f(x∗) = 0 is then a necessary and sufficient condition, see Lecture 1.

In the exercises of Problem Set 4 we used the fundamental theorem of linear in-
equalities to derive the LP duality theorem, yielding necessary and sufficient optimal-
ity conditions for linear programming, the simplest case of a constrained optimisation
problem in which the objective and constraint functions are all linear. Note that the
LP duality theorem only involved first order derivatives, and that linear programming
is a special case of a convex optimisation problem, that is, the minimisation of a convex
function over a convex domain.

It is thus natural to ask if optimality conditions of constrained optimisation prob-
lems

(NLP) min
x∈Rn

f(x)

s.t. gi(x) = 0, (i ∈ E),

gj(x) ≥ 0 (j ∈ I)

mirror the situation in unconstrained optimisation, that is,
• first order conditions are necessary and sufficient for convex problems,
• second order conditions rely on strict local convexity.

In the next two lectures we will see that both points need much further refinement
but hold under proper regularity assumptions.

2. First Order Necessary Optimality Conditions.

2.1. Mechanistic Interpretation. A useful picture in unconstrained optimi-
sation is to imagine a point mass m or an infinitesimally small ball that moves on a
hard surface

F :=
{

(x, f(x)) : x ∈ R
n
}

without friction, see Figure 2.1. The external forces acting on the point mass are the
gravity force m~g =

(

0
−mg

)

and the reaction force

~Nf =
mg

1 + ‖∇f(x)‖2

(−∇f(x)
1

)

acting in normal direction away from the surface and countering the normal gravity
component, so that the resulting total external force is

~R = m~g + ~Nf =
mg

1 + ‖∇f(x)‖2

[

−∇f(x)
−‖∇f(x)‖2

]

⊥ ~Nf .
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Fig. 2.1. Mechanistic interpretation of unconstrained optimality conditions

This total force equals zero if and only if ∇f(x) = 0, and if the test mass is placed at
such a point then it will not move away, which is why we call such points stationary
points of f . When the test mass is slightly moved from a local maximiser, then
the external forces will pull it further away, whereas in a neighbourhood of a local
minimiser they will restore the point mass to its former position. This is expressed by
the second order optimality conditions: an equilibrium position is stable if D2f(x) � 0
and instable if D2f(x) ≺ 0.

This mechanistic interpretation extends to constrained optimisation: we can in-
terpret an inequality constraint g(x) ≥ 0 as a hard smooth surface

G :=
{

(x, z) ∈ R
n × R : g(x) = 0

}

which is parallel to the z-axis everywhere and keeps the point mass from rolling into
the domain where g(x) < 0. Such a surface can exert only a normal force that points
towards the domain {x : gj(x) > 0}. Therefore, the reaction force must be of the form
~Ng = µg

(∇g(x)
0

)

, where µg ≥ 0. In the case depicted in Figure 2.2 where there is only
one inequality constraint, the point mass is at rest and does not roll to lower terrain if
the sum of external forces is zero, that is, ~Nf + ~Ng +m~g = 0. Since ~Nf = µf

(−∇f(x)
1

)

for some µf ≥ 0, we find

µf

[

−∇f(x)
1

]

+ µg

[

∇g(x)
0

]

+

[

0
−mg

]

= 0,

from where it follows that µf = mg and

∇f(x) = λ∇g(x) (2.1)

with λ = µ/mg ≥ 0. In other words, ~Nf is determined by the condition that its

vertical component counter-balances the force of gravity, and ~Ng by the condition

that it counter-balances the horizontal component of ~Nf . This second condition is
expressed in the balance equation (2.1).

When multiple inequality constraints are present, then the horizontal component
of ~Nf must be counter-balanced by the sum of the reaction forces excerted by the
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Fig. 2.2. Mechanistic interpretation of constrained first order optimality conditions: the sum

of external forces has to be zero.

constraint manifolds that touch the test mass. The balance equation (2.1) must thus
be replaced with

∇f(x) =
∑

j∈I
λj∇gj(x)

for some λj ≥ 0, and since constraints for which gj(x) > 0 cannot excert a force on
the test mass, we must set λj > 0 for these indices, or equivalently, the equation
λjgj(x) = 0 must hold for all j ∈ I.

It remains to discuss the influence of equality constraints when they are present.
Replacing gi(x) = 0 by the two inequality constraints gi(x) ≥ 0 and −gi(x) ≥ 0,
our mechanistic interpretation yields two parallel surfaces G+

i and G−
i , leaving an

infinitesimally thin space between them within which our point mass is constrained
to move, see Figure 2.3. The net reaction force of the two surfaces is of the form
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Fig. 2.3. Mechanistic interpretation of an equality constraint: the net reaction force can point

to either side of Gi. Here, we are looking down the z-axis.

λ+
i ∇gi(x) + λ−

i ∇(−gi)(x) = λi∇gi(x),
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where we replaced the difference λ+
i −λ−

i of the bound-constrained variables λ+
i , λ−

i ≥
0 by a single unconstrained variable λi = λ+

i −λ−
i . Note that in this case the conditions

λ+
i gi(x) = 0, λ−

i (−gi(x)) = 0 are satisfied automatically, since gi(x) = 0 if x is feasible.

In summary, our mechanistic motivation suggests that if x is a local minimiser of
(NLP), then there exist Lagrange multipliers λ ∈ R

|I∪E| such that

∇f(x) −
∑

i∈I∪E
λi∇gi(x) = 0

gi(x) = 0 (i ∈ E)

gj(x) ≥ 0 (j ∈ I)

λjgj(x) = 0 (j ∈ I)

λj ≥ 0 (j ∈ I).

These are the so-called Karush-Kuhn-Tucker (KKT) conditions. Our intuitive mo-
tivation cannot replace a rigorous proof, but the physical interpretation provides an
easy explanation and provides a jog for memory.

2.2. Constraint Qualification. Before we start deriving the KKT conditions
more rigorously, we introduce a few technical concepts and some notation.

Definition 2.1. Let x∗ ∈ R
n be feasible for the problem (NLP). We say

that the inequality constraint gj(x) ≥ 0 is active at x∗ if g(x∗) = 0. We write
A(x∗) := {j ∈ I : gj(x

∗) = 0} for the set of indices corresponding to active inequality
constraints.

Of course, equality constraints are always active, but we will account for their
indices separately. If J ⊂ E ∪I is a subset of indices, we will write gJ for the vector-
valued map that has gi (i ∈ J ) as components in some specific order. Furthermore,
we write g for gE∪I.

There are situations in which our mechanical picture does not apply: if two in-
equality constraints have first order contact at a local minimiser, as in Figure 2.4,
then they cannot annul the horizontal part of ~Nf . In this case the mechanistic inter-
pretation is flawed. When there are more constraints constraints, then generalisations
of this situation can occur. In order to prove the KKT conditions, we must therefore
make a regularity assumption on the constraints:

Definition 2.2. If {∇gi : i ∈ E ∪A(x∗)} is a linearly independent set of vectors,
we say that the linear independence constraint qualification (LICQ) holds at x∗.

The LICQ assumption guarantees that the linearisation of (NLP) around x∗ is
differential-topologically equivalent to (NLP) in a neighbourhood of x∗: the dimension
of the manifold formed by the strictly feasible points in a neighbourhood of x∗ must
remain the same after replacing each of the constraint surfaces by their tangent plane
at x∗, see Figure 2.6. We illustrate two situations in which the dimension of the
strictly feasible set changes in the linearised problem:

• Some of the active inequality constraint surfaces may not intersect properly:
Figure 2.5 shows that when two constraint surfaces have first order contact,
then the dimension of the strictly feasible set in the linearised problem col-
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Fig. 2.4. The mechanistic interpretation breaks down because the surfaces G1 and G2 are

tangential to one another at x∗.

lapses. Figure 2.6 shows that this doesn’t happen when the constraint surfaces
intersect properly.

• Some of the equality constraints may not intersect properly: Figure 2.7 shows
that when two equality constraint surfaces have first order contact at x∗, then
the set of points that satisfy the equality constraints has higher dimension
in the linearised problem. At x̄ however the equality constraints intersect
properly and the dimension remains the same.
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Fig. 2.5. Two active inequality constraints do not intersect properly
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Fig. 2.7. Two equality constraints have first order contact at x∗ but intersect properly at x̄. Tx

is defined as Tx := {y : ∇g1(x)(y − x) = 0,∇g2(x)(y − x) = 0}.

2.3. A Key Lemma. In this section we will prove a lemma that will be ex-
tremely useful in everything that follows.
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Lemma 2.3. Consider the problem (NLP) where f and gi (i ∈ E ∪ I) are Ck

functions with k ≥ 1. Let x∗ be a feasible point where the LICQ holds and let d ∈ R
n

be a vector such that

d 6= 0,

dT∇gi(x
∗) = 0, (i ∈ E),

dT∇gj(x
∗) ≥ 0, (j ∈ A(x∗)).

(2.2)

Then for ε > 0 small enough there exists a path x ∈ Ck
(

(−ε, +ε), Rn
)

such that

x(0) = x∗,

d

dt
x(0) = d,

gi(x(t)) = tdT∇gi(x
∗) (i ∈ E ∪ A(x∗), t ∈ (−ε, ε)),

gi(x(t)) = 0, (i ∈ E , t ∈ (−ε, ε)),

gj(x(t)) ≥ 0 (j ∈ I, t ≥ 0).

(2.3)

Proof. Let l = |A(x∗) ∪ E|. Since the LICQ holds, it is possible to choose Z ∈
R

(n−l)×n such that
[

DgA(x∗)∪E (x∗)

Z

]

is a nonsingular n×n matrix. Let h : R
n×R → R

n

be defined by

(x, t) 7→
[ gA(x∗)∪E (x)−tDgA(x∗)∪E (x∗)d

Z(x−x∗−td)

]

Then h′(x∗, 0) = [ Dxh(x∗,0) Dth(x∗,0) ], where where

Dxh(x∗, 0) =
[

DgA(x∗)∪E (x∗)

Z

]

and

Dth(x∗, 0) = −
[

DgA(x∗)∪E (x∗)d

Zd

]

= −Dxh(x∗, 0)d

are the leading n × n and trailing n × 1 block respectively.

Since Dxh(x∗, 0) is nonsingular, the Implicit Function Theorem (see Lecture 8)
implies that for ε̃ > 0 small enough there exists a unique Ck function x : (−ε̃, ε̃) → R

n

and a neighbourhood V(x∗) such that for x ∈ V(x∗), t ∈ (−ε̃, ε̃),

h(x, t) = 0 ⇔ x = x(t).

In particular, we have x(0) = x∗ and gi(x(t)) = tdT∇g(x∗) for all i ∈ A(x∗) ∪ E
and t ∈ (−ε̃, ε̃). (2.2) therefore implies that gi(x(t)) = 0 (i ∈ E) and gi(x(t)) ≥ 0
(i ∈ A(x∗), t ∈ [0, ε̃)).

On the other hand, since gi(x
∗) > 0 (i /∈ A(x∗)), the continuity of x(t) implies

that there exists ε ∈ (0, ε̃) such that gj(x(t)) > 0 (j ∈ I \ A(x∗), t ∈ (−ε, ε)).

Finally,

d

dt
x(0) = −

(

Dxh(x∗, 0)
)−1

Dth(x∗, 0) = d

follows from the second part of the Implicit Function Theorem.
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2.4. KKT Conditions. We are ready to prove a theorem which shows that if
x∗ is a local minimiser for (NLP) and if the LICQ holds at x∗ then x∗ is a minimiser
of the linear programming problem obtained by linearising (NLP) around x∗.

Theorem 2.4. If x∗ is a local minimiser of (NLP) where the LICQ holds then

∇f(x∗) ∈ cone ({±∇gi(x
∗) : i ∈ E} ∪ {∇gj(x

∗) : j ∈ A(x∗)}) .

Proof. Suppose our claim is wrong. Then the fundamental theorem of linear
inequalities implies that there exists a vector d ∈ R

n such that

dT∇gj(x
∗) ≥ 0, (j ∈ A(x∗)),

±dT∇gi(x
∗) ≥ 0, (i.e., dT∇gi(x

∗) = 0) (i ∈ E),

dT∇f(x∗) < 0.

Since d satisfies (2.2), Lemma 2.3 implies that there exists a path x : (−ε, ε) → R
n

that satisfies (2.3). Taylor’s theorem then implies that

f(x(t)) = f(x∗) + td∇f(x∗) + O(t2) < f(x∗)

for 0 < t � 1. Since (2.3) shows that x(t) is feasible for t ∈ [0, ε), this contradicts the
assumption that x∗ is a local minimiser.

Note that the condition

∇f(x∗) ∈ cone ({±∇gi(x
∗) : i ∈ E} ∪ {∇gj(x

∗) : j ∈ A(x∗)})

is equivalent to the existence of λ ∈ R
|E∪I| such that

∇f(x∗) =
∑

i∈E∪I
λi∇gi(x

∗), (2.4)

where λj ≥ 0 (j ∈ A(x∗)) and λj = 0 for (j ∈ I \ A(x∗)). Moreover, x∗ must be
feasible. Thus, Theorem 2.4 shows that when x∗ is a local minimiser where the LICQ
holds, then the KKT conditions must hold.

We can formulate this result in slightly more abstract form in terms of the La-
grangian associated with (NLP):

L : R
n × R

m → R

(x, λ) 7→ f(x) −
m

∑

i=1

λigi(x).

Equation (2.4) says that the derivative of the Lagrangian with respect to the x coor-
dinates is zero. Putting all the pieces together, we obtain the following theorem:
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Theorem 2.5 (First Order Necessary Optimality Conditions). If x∗ is a local
minimiser of (NLP) where the LICQ holds then there exists λ∗ ∈ R

m such that (x∗, λ∗)
solves the following system of inequalities,

DxL(x∗, λ∗) = 0,

λ∗
j ≥ 0 (j ∈ I),

λ∗
i gi(x

∗) = 0 (i ∈ E ∪ I),

gj(x
∗) ≥ 0 (j ∈ I),

gi(x
∗) = 0 (i ∈ E).

2.5. The Method of Lagrange Multipliers. In this section we show by ways
of an example how the KKT conditions can be used to solve nonlinear optimisation
problems. This method of solving optimisation problems is called the method of La-
grange multipliers. Even though this approach can be carried through explicitly only
when the number of constraints is small, numerical algorithms for nonlinear program-
ming are actually designed to do the same in situations where the calculations cannot
be done by hand.

Example 2.6. Solve the following nonlinear programming problem

min
x∈R2

f(x) = x3
1 + x2

s.t. g1(x) := x2
1 + 2x2

2 − 1 = 0

g2(x) := x1 ≥ 0.

(2.5)

We have

∇g1(x) =

[

2x1

4x2

]

, ∇g2(x) =

[

1
0

]

, ∇f(x) =

[

3x2
1

1

]

.

If we want to find all points x∗ that satisfy the conditions of Theorem 2.4 we have to
distinguish two cases corresponding to A(x∗) = ∅ and A(x∗) = {2}.

If A(x∗) = ∅ then x∗
1 > 0. We must find λ∗

1 ∈ R such that

[

3x∗2
1

1

]

= λ∗
1

[

2x∗
1

4x∗
2

]

,

which is equivalent to

λ∗
1 =

3x∗
1

2
6= 0, λ∗

1 =
1

4x∗
2

and implies

6x∗
1x

∗
2 = 1. (2.6)

In particular, x∗
2 6= 0, and hence ∇g1(x

∗),∇g2(x
∗) are linearly independent, that is,

the LICQ holds at these points. We also need x∗ to be feasible,

x∗2
1 + 2x∗2

2 = 1. (2.7)
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(2.6) and (2.7) together imply 18x∗4
1 − 18x∗2

1 + 1 = 0, which shows that x∗2
1 ∈

{0.941, 0.059}. Since we have assumed x∗
1 > 0 this leaves the two possible solutions

x[1] =

[

0.243
0.6859

]

, x[2] =

[

0.97
0.1718

]

with function values f(x[1]) = 0.7002, f(x[2]) = 1.0845.
In the second case where A(x∗) = {2} we have x∗

1 = 0. We need to find λ∗
1 ∈ R

and λ∗
2 ≥ 0 such that

[

0
1

]

= λ∗
1

[

0
4x∗

2

]

+ λ∗
2

[

1
0

]

.

This implies λ∗
2 = 0. Moreover, since x∗ must be feasible and hence 2x∗2

2 = 1 6= 0, we
have λ∗

1 = (4x∗
2)

−1 and x2 = ±1/
√

2. This yields the two further candidate points

x[3], x[4] = ±
[

0
1√
2

]

.

At these points we have ∇g1(x
∗) =

( 0
±2

√
2

)

and ∇g2(x
∗) =

(

1
0

)

, and hence, the LICQ

holds. The objective function values are f(x[3]) = 0.7071, f(x[4]) = −0.7071.
Overall we find four candidate points where the KKT conditions hold. Among

these four points, x[4] has the smallest objective value, and this must be the global
minimiser of our problem.
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