CNAc: Continuous Optimization - solutions to problem set 2

Honour School of Mathematics, Oxford University
Hilary Term 2006, Dr Nick Gould

Problem 1.

(i) Since $H(x)=\operatorname{diag}(\kappa, 1)$ which is positive definite, any first-order critical point must be an isolated local minimizer. But $g(x)=\operatorname{diag}(\kappa, 1) x$ which is zero if and only if $x=0$, and thus $x_{*}=0$ is the only local minimizer. Finally, as $f(x) \geq f(0)=0, x_{*}$ is the global minimizer.
(ii) Arguing inductively, suppose $x_{k}=\tau(e, \kappa)^{T}$, where $\tau>0$ and $e=(-1)^{k}$. Then $g_{k} \equiv g\left(x_{k}\right)=\tau(\kappa e, \kappa)$. The steepest-descent method takes a step

$$
x_{k}-\alpha_{k} g_{k}=\tau\binom{e(1-\alpha \kappa)}{\kappa(1-\alpha)}
$$

where the stepsize α_{k} is chosen to minimize $\phi(\alpha)=f\left(x_{k}-\alpha g_{k}\right)$. Since $\phi^{\prime}(\alpha)=-\tau^{2}\left(\left(1+e^{2}\right) \kappa^{2}-\alpha \kappa^{2}\left(e^{2} \kappa+1\right)\right.$, and as $e^{2}=1$, it follows that $\alpha_{k}=2 /(1+\kappa)$ and hence $x_{k+1}=\tau(\kappa-1) /(\kappa+1)(-e, \kappa)^{T}$.
(iii) The convergence is Q-linear because

$$
\frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=\rho=\frac{\kappa-1}{\kappa+1}<1 .
$$

The first component of x will be correct to one decimal place as soon as $\kappa^{k}<0.1$, i.e., as soon as $k \geq \log 0.1 / \log \rho$. For $\kappa=1000,1152$ iterations are required, while for $\kappa=10^{6}, 1151296$ iterations are needed!
(iv) Expressed in the new coordinates, the objective function becomes

$$
\hat{f}(y)=f(x(y))=\frac{1}{2} y^{T} y
$$

and the starting point is $y_{0}=\operatorname{diag}\left(\kappa^{\frac{1}{2}}, 1\right) x_{0}=\left(\kappa^{\frac{1}{2}}, \kappa\right)^{T}$. The steepest descent direction at y_{0} is $d_{k}=$ $-\nabla \hat{f}\left(y_{0}\right)=-y_{0}$. Therefore, the exact line search corresponds to the step length $\alpha_{0}=1$ and leads to the global minimiser $y^{*}=0$ in one step.

Problem 2.

(i) We have that $g(x)=g+B x$ and thus $g(x+s)=g+B x+B s$. Subtracting these two identities yield the required result.
(ii) The secant condition and the requirement that the update be of rank one gives

$$
B_{k+1} s_{k}=B_{k} s_{k}+\beta v^{T} s_{k} v=y_{k}
$$

and hence that

$$
\left(\beta v^{T} s_{k}\right) v=y_{k}-B_{k} s_{k}
$$

Thus v is parallel to $y_{k}-B_{k+1} s_{k}$ so long as

$$
\begin{equation*}
\beta v^{T} s_{k} \neq 0 \tag{1}
\end{equation*}
$$

Assuming that (1), we may write $v=\gamma\left(y_{k}-B_{k+1} s_{k}\right)$ for some $\gamma \neq 0$, and hence that

$$
\gamma=\beta v^{T} s_{k}=\beta \gamma s_{k}^{T}\left(y_{k}-B_{k+1} s_{k}\right)
$$

from which we deduce that

$$
B_{k+1}=B_{k}+\frac{\left(y_{k}-B_{k} s_{k}\right)\left(y_{k}-B_{k} s_{k}\right)^{T}}{\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k}}
$$

so long as

$$
s_{k}^{T}\left(y_{k}-B_{k+1} s_{k}\right) \neq 0
$$

(iii) The secant condition and the requirement that the update be of given form give

$$
B_{k+1} s_{k}=B_{k} s_{k}+\theta y_{k}^{T} s_{k} y_{k}+\beta v^{T} s_{k} v=y_{k}
$$

and hence that

$$
\beta v^{T} s_{k} v=\phi y_{k}-B s_{k}, \quad \text { where } \phi=1-\theta y_{k}^{T} s_{k}
$$

Thus v is parallel to $\phi y_{k}-B_{k} s_{k}$ so long as

$$
\begin{equation*}
\beta v^{T} s_{k} \neq 0 \tag{2}
\end{equation*}
$$

Assuming that (2), we may write $v=\gamma\left(\phi y_{k}-B_{k} s_{k}\right)$ for some $\gamma \neq 0$, and hence that

$$
\gamma=\beta v^{T} s_{k}=\beta \gamma s_{k}^{T}\left(\phi y_{k}-B_{k} s_{k}\right)
$$

from which we deduce that

$$
B_{k+1}=B_{k}+(1-\phi) \frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}+\frac{\left(\phi y_{k}-B_{k} s_{k}\right)\left(\phi y_{k}-B_{k} s_{k}\right)^{T}}{\phi y_{k}^{T} s_{k}-s_{k}^{T} B_{k} s_{k}}
$$

so long as

$$
\phi y_{k}^{T} s_{k}-s_{k}^{T} B_{k} s_{k} \neq 0
$$

(iv) The case $\phi=0$ corresponds to the BFGS update, while $\phi=1$ gives the symmetric rank-one update.

Problem 3.

If B_{k} is symmetric positive definite, we can write $B=L L^{T}$ for some non-singular matrix L.. Define $w=L^{T} s$ and let v be such that $l v=y$. Then

$$
B^{+}=L\left(I-\frac{w w^{T}}{w^{T} w}+\frac{v v^{T}}{v^{T} w}\right) L^{T}
$$

note that $P \stackrel{\text { def }}{=} I-w w^{T} / w^{T} w$ is a projection matrix, and $v^{T} w=s^{T} y>0$. It thus remains to show that

$$
M=P+\frac{v v^{T}}{v^{T} w}
$$

is positive definite. Since vector u may be expressed as a linear combination of vectors in the range and null-spaces of P , and as the latter is simply vectors parallel to w, we write

$$
u=\alpha w+P t
$$

for some alpha and t (not both zero). We must show that $u^{T} M u>0$. But a simple calculation (using the fact that $P w=0$) gives

$$
u^{T} M u=\|P t\|^{2}+\beta^{2} v^{T} w, \text { where } \beta=\alpha+\frac{v^{T} P t}{v^{T} w}
$$

Since by assumption not both t and α are zero and $v^{T} w>0$, it then follows that $u^{T} M u>0$.

Problem 4^{\dagger}.

(i) Since $x_{1}=x_{0}+\alpha_{0} d_{0}$ and $d_{0}=-g\left(x_{0}\right)$, we have

$$
g\left(x_{1}\right)=B x_{1}+g=B x_{0}-\alpha_{0} B g\left(x_{0}\right)+g=g\left(x_{0}\right)-\alpha_{0} B g\left(x_{0}\right) \in \operatorname{span}\left\{g\left(x_{0}\right), B g\left(x_{0}\right)\right\} .
$$

(ii) We have shown this for $k=0$, so we may assume it is true for $k \leq l$, and then

$$
\begin{equation*}
g\left(x_{l+1}\right)=B x_{l+1}+g=B x_{l}+\alpha_{l} B d_{l}+g=g\left(x_{l}\right)+\alpha_{l} B d_{l} . \tag{3}
\end{equation*}
$$

Because

$$
\operatorname{span}\left\{d_{0}, \ldots, d_{k}\right\}=\operatorname{span}\left\{g\left(x_{0}\right), \ldots, g\left(x_{k}\right)\right\}
$$

and the induction hypothesis we have $d_{l} \in \mathcal{K}_{l}$. Therefore, (3) shows

$$
g\left(x_{l+1}\right) \in \operatorname{span}\left(\left\{g\left(x_{l}\right)\right\} \cup B \mathcal{K}_{l}\right)=\mathcal{K}_{l+1}
$$

(iii) This follows from the identity

$$
(I+A)^{p}=I+\binom{p}{1} A+\binom{p}{2} A^{2}+\ldots+\binom{p}{p-1} A^{p-1}+A^{p}
$$

which is easily checked by induction on p.
(iv) Since $\operatorname{rank}(A)=r$, the image space of A is of dimension r. Therefore, at most r of the vectors $A g\left(x_{0}\right), \ldots, A^{k} g\left(x_{0}\right)$ are linearly independent, and if $g\left(x_{0}\right)$ is linearly independent of the image space of A, then \mathcal{K}_{k} is at most $r+1$ dimensional.
(v) In the proof of Lemma 2.3 we have shown that $g\left(x_{j}\right) \perp g\left(x_{k}\right)$ for all $j \neq k$. Since \mathcal{K}_{k} is at most $r+1$ dimensional for all k, there are at most $r+1$ mutually orthogonal nonzero vectors in this space, which shows that it must be the case that $g\left(x_{k}\right)=0$ for some $k \leq r$. But since B is positive definite, f is bounded from below, and the only isolated local minimizer x_{k} is thus its global minimiser.
\dagger Thanks to Raphael Hauser for this solution.

