CNAc: Continuous Optimization

Solutions to problem set 3 - trust-region methods

Honour School of Mathematics, Oxford University
Hilary Term 2006, Dr Nick Gould

Problem 1.

The Cauchy point is $s_{k}^{\mathrm{C}}=-\alpha_{k}^{\mathrm{C}} g_{k}$ where

$$
\alpha_{k}^{\mathrm{C}}=\underset{0<\alpha \leq \Delta_{k} /\left\|g_{k}\right\|}{\arg \min } m_{k}\left(-\alpha g_{k}\right)
$$

To find α_{k}^{C} :

- if $g_{k}^{T} B_{k} g_{k} \leq 0$,

$$
\alpha_{k}^{\mathrm{C}}=\frac{\Delta_{k}}{\left\|g_{k}\right\|}
$$

- otherwise,

$$
\alpha_{k}^{\mathrm{C}}=\min \left(\frac{\left\|g_{k}\right\|_{2}^{2}}{g_{k}^{T} B_{k} g_{k}}, \frac{\Delta_{k}}{\left\|g_{k}\right\|}\right) .
$$

Problem 2.

(a) The unconstrained minimizer $-(1,0,1 / 2)^{T}$ has ℓ_{2}-norm $1<\sqrt{5} / 2<2$. Thus, since B is positive definite, the unconstrained minimizer solves the problem.
(b) The unconstrained minimizer has too large a ℓ_{2}-norm, so the solution must lie on the boundary of the constraint. The solution must be of the form $-(1 /(1+\lambda), 0,1 /(2+\lambda))^{T}$. To satisfy the trust-region constraint, we then must have

$$
\frac{1}{(1+\lambda)^{2}}+\frac{1}{(2+\lambda)^{2}}=\Delta^{2}=\frac{25}{144}
$$

which has a root $\lambda=2$. Thus the required solution is $-(1 / 3,0,1 / 4)^{T}$.
(c) $1(\mathrm{c})$. The Hessian is indefinite so the solution must lie on the boundary of the constraint. The solution is then of the form $-(1 /(-2+\lambda), 0,1 /(-1+\lambda))^{T}$. To satisfy the trust-region constraint, we then must have

$$
\frac{1}{(-2+\lambda)^{2}}+\frac{1}{(-1+\lambda)^{2}}=\Delta^{2}=\frac{25}{144}
$$

which has a root $\lambda=5$ (c.f. the previous equation with a change of variables $\hat{\lambda}=\lambda+3$) at which $B+\lambda I$ is positive semi-definite. Thus again the solution is $-(1 / 3,0,1 / 4)^{T}$.
(d) Again B is indefinite, and so the solution must be of the form $-(\omega, 0,1 /(-1+\lambda))^{T}$, where $\omega=$ $0 /(-2+\lambda)$ can only be nonzero if $\lambda=2-$ note that $B+\lambda I$ is only positive semi-definite when $\lambda \geq 2$. Suppose that $\lambda>2$. To satisfy the trust-region constraint, we then must have

$$
\frac{1}{(-1+\lambda)^{2}}=\Delta^{2}=\frac{1}{4}
$$

which has roots 1 ± 2. The desired root is $\lambda=3$, from which we deduce the solution is $-(0,0,1 / 2)^{T}$.
(e) As in (d), if we guess that $\lambda>2$, we find that the roots of

$$
\frac{1}{(-1+\lambda)^{2}}=\Delta^{2}=2
$$

are $1 \pm 1 / \sqrt{2}<2$. So λ must be 2 , and the solution is of the form $-(\omega, 0,1)^{T}$. To satisfy the trust-region constraint, we then must have

$$
\omega^{2}+1=\Delta^{2}=2
$$

and hence $\omega= \pm 1$. Thus the required solution is $-(\pm 1,0,1)^{T}$.

Problem 3.

The problem is convex, so the required solution will satisfy $(B+\lambda I) s=-g$ for some $\lambda \geq 0$. Thus

$$
s=-\binom{\frac{1}{1+\lambda}}{\frac{1}{3+\lambda}}
$$

We illustrate this trajectory in Figure 1.

Figure 1: The trust-region minimizer of the quadratic function $0.5 s_{1}^{2}+1.5 s_{2}^{2}+s_{1}+s_{2}$ as the trust-region radius increases from zero to infinity. Note that the tangent to the trajectory when the radius is zero is in the steepest-descent direction.

The Lagrange multiplier and the trust-region radius satisfy the relationship

$$
\begin{equation*}
\frac{1}{(1+\lambda)^{2}}+\frac{1}{(3+\lambda)^{2}}=\Delta^{2} \tag{1}
\end{equation*}
$$

for $\lambda \geq 0$. Letting $\theta=\lambda+2$, (1) implies

$$
\Delta^{2}\left(\theta^{2}-1\right)^{2}=2 \theta^{2}+2
$$

from which trivial calculations show that

$$
\theta=\frac{\sqrt{1+\Delta^{2}+\sqrt{1+4 \Delta^{2}}}}{\Delta}
$$

i.e.,

$$
\lambda=-2+\frac{\sqrt{1+\Delta^{2}+\sqrt{1+4 \Delta^{2}}}}{\Delta}
$$

Using (1), the solution becomes unconstrained when $\lambda=0$, that is when $\Delta=\sqrt{10} / 3$.

Problem 4.

Let $\bar{s}=R s$. Then the problem we wish to solve is equivalent to

$$
\begin{equation*}
\underset{\bar{s} \in \mathbb{R}^{n}}{\operatorname{minimize}} \bar{s}^{T} \bar{g}+\frac{1}{2} \bar{s}^{T} \bar{B} \bar{s} \text { subject to }\|\bar{s}\|_{2} \leq \Delta \tag{2}
\end{equation*}
$$

where $\bar{g}=R^{-T} g$ and $\bar{B}=R^{-T} H R^{-1}$. But then Theorem 3.9 gives that the global minimizer \bar{s}_{*} of (2) satisfies

$$
\begin{equation*}
\left(\bar{B}+\lambda_{*} I\right) \bar{s}_{*}=-\bar{g} \tag{3}
\end{equation*}
$$

where $\bar{B}+\lambda_{*} I$ is positive semi-definite, $\lambda_{*} \geq 0$ and $\lambda_{*}\left(\left\|\bar{s}_{*}\right\|_{2}-\Delta\right)=0$. Equation (3) is equivalent to

$$
\begin{equation*}
\left(B+\lambda_{*} M\right) s_{*}=-g \tag{4}
\end{equation*}
$$

while

$$
\bar{B}+\lambda_{*} I=R^{-T}\left(B+\lambda_{*} M\right) R^{-1}
$$

which is positive semi-definite if and only if $B+\lambda_{*} M$ is. Thus the required conditions are that s_{*} satisfies (4) where $B+\lambda_{*} M$ is positive semi-definite, $\lambda_{*} \geq 0$ and $\lambda_{*}\left(\left\|s_{*}\right\|_{M}-\Delta\right)=0$.

