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Problem 1.

(a)

Suppose that z, is a local but not global minimizer. Then there must be some y € C for which
f(y) < f(z). But then by convexity az. + (1 — )y € C, and

flaze+ (1 —a)y) <af(z.) + (1 - a)f(y) <af(@)+ (1 —a)f(e.) = f(z.)

for all a € [0, 1], Hence all points between x, and y have a smaller value than f(x,), and thus z,
cannot be a local minimizer.

We show that if z, and y,. are distinct global minimizers of the convex function f(z), then so is
az,+ (1 —a)y, for all @ € [0,1]. Since z, and y, are global minimizers, f(x.) = f(y.). By convexity
we thus have

flaz. + (1= a)y.) < af(@.) + (1 = a)f(y.) = f(@)

But since z. is a global minimizer
f(@e) < flowe + (1 = a)y.),
from which we deduce that f(az. + (1 — a)y.) = f(x.)

Suppose that x, and y. are distinct global minimizers, and thus f(z.) = f(y«). Then since f is
strictly convex,

flaz. + (1= a)y.) < af(@) + (1 = a)f(y) = f(a)

for any a € (0,1), which contradicts the global optimality of .. Thus there can only be a single
global minimizer.

Simple manipulation shows that for any distinct = and y,

flaz, + (1= a)y) — af(z.) = (1 - a)f(y) = (& = a)(z —y) " H(z —y). (0)

But a? —a < 0 for all a € [0,1]. Thus (0) shows that f is convex if H is positive semi-definite. If H
is indefinite, f cannot be convex because (0) will be negative if we choose  — y to be an eigenvector
of H corresponding to a negative eigenvalue

Since a? — a < 0 for all a € (0,1), (0) shows that f is strictly convex if H is positive definite. If H
has an eigenvalue A < 0, f cannot be strictly convex because (0) will be less-than-or-equal-to zero if
we choose x — y to be an eigenvector of H corresponding to this eigenvalue.



Problem 2.

(a) We first need to check that s” Bs > 0 when As = 0, as otherwise the solution lies at infinity. In all
cases B is diagonal, so we write B = diag(bi; boa b33). It is easy to see that the columns of the

matrix
-1 0
N = 1 0
0 1
form a basis for the null-space of A, so we need to check that

NTBN_(b1+b2 0)

0 bs

is positive semi-definite. For our first example N7 BN has all its eigenvalues at 1, so the minimizer
is finite. The minimizer satisfies

2 0 0 1 z1 1
0 -1 0 1 z | |1
0 0 1 0 zs || 1
1 1 00 Y 2

which gives x = (—2,4,1) and y = 5.

(b) In this case NT BN has eigenvalues 0 and 1, so there is a solution if and only if

1 0 01 z1 1
0 -1 0 1 s | |1
0 0 1 0 zs || 1
1 1 00 y 2

is consistent. The system gives x3 = 1, but then the remaining equations lead to both —xs +y =1
and —xg +y = —1. Thus the problem is unbounded from below.

(c) In this case NT BN has eigenvalues —1 and 1, so the problem is unbounded from below, and the
solution lies at infinity.

Problem 3.

Iteration 0: there are no constraints active at the starting point zo = (1/12,25/28), so Wy = 0. The
unconstrained minimizer of ¢(z) is at xg + so = (1,1/2), so that sy = (11/12,—11/28). Considering the
line xo + asg, we find that constraint

—[zh = [2]2 = -1 (1)
is satisfied for all 0 < « < 1/22, constraint
=3[z]; — [z]2 > —1.5 (2)
is satisfied for all 0 < « < 5/33, constraint
[z >0 (3)
is satisfied for all o > 0, and constraint
[2]2 >0 (4)

is satisfied for all 0 < a < 25/11 > 1, so that the largest permitted stepsize is ag = 1/22. Hence
x1 = (1/8,7/8), and Wy = A; = {(1)}.



Iteration 1: we must find the minimizer s; of g(x1 + s) = 3([s]1 — 7/8)% + 1([s]2 + 3/8)? subject to
—[s]1 — [s]2 = 0. Trivial calculation reveals that s; = (5/8, —5/8). Considering the line x; + asi, we find
that constraint (2) is satisfied for 0 < o < 1/5, constraint (3) is satisfied for a > 0, and constraint (4) is
satisfied for 0 < a < 7/5 > 1—of course constraint (1) is always satisfied as (1) € Wy. Thus the largest
permitted stepsize is a; = 1/5, and hence x2 = (1/4,3/4), and W> = {(1), (2)}.

Iteration 2: now we need to find the minimizer sp of q(z2 + s) = 1([s]1 — 3/4)% + 1([s]2 + 1/4)? subject
to —[s]1 — [s]2 = 0 and —3[s]; — [s]2 = 0. The solution now is s = 0, and the Lagrange multipliers satisfy

<—1 —3)<—[y3]1>_( 3/4 )

-1 -1 —lysl2 )\ -1/4 )"

Thus z3 = 22 = (1/4,3/4) and y3 = (—3/4,1/2). Since [ys]1 < 0, progress can be made by deleting
constraint (1), and hence W5 = {(2)}.

Iteration 3: we must find the minimizer s3 of q(x3 + s) = 1([s]1 — 3/4)? + 1([s]2 + 1/4)? subject to
—3[s]1 — [s]2 = 0. Again, trivial calculation reveals that s3 = (3/20, —9/20). Considering the line 23+ ass,
we find that constraint (1) is satisfied for all & > 0, constraint (3) is satisfied for & > 0 and constraint
(4) is satisfied for 0 < a < 5/3 > 1—of course now constraint (2) is always satisfied as (2) € Ws. Thus a
stepsize ay = 1 is allowed and x4 = (2/5,3/10). Since the full step has been taken, we need to evaluate

() mia- ()

and thus [ys4]2 = 1/5 > 0. Hence z. = x4 = (2/5,3/10) is the required minimizer.

the equation

the Lagrange multipliers. We require

Problem 4f.

(a) The KKT conditions are

—1+2ylz)y =0 (5)
—1+4+2y[z]s =0 (6)
1—[2]f - [z =0. (7)

If y = 0 then (5) and (6) are violated, so there are no solutions corresponding to this case. If y # 0
then [z]; = [z]s = 1/(2y), thus (7) implies that the KKT points are (2., y.) and (—z, —y«), where
Ys = [x*]l = [1‘*]2 = 1/\/5

(b) The quadratic penalty function is
1 2

(z,p) = =[] — [z]2 + @(1 — [a]f — [2]3)%
The stationary points of ®(z, i) satisfy
—1= 2 (1= o — [+5)
Vel ) = < 1 21— [ - o)
which implies
—2[z; (1 [2]f = [2]3) = =2[z]5(1 — [2]} — [2]3). (8)

Since p > 0, we have 1 — [ 13 — [#]3 # 0, and hence (8) shows that [z]; = [z]2. Substituting this back
into (8), we find 2[x(u)]3 — [z(u)]1 — p/2 = 0.

(c) We have
[2]1(1 = 2[2]7) + 1/2 = 0. 9)



So, as 1 — 0, it must be the case that [z]; (1 —2[z]?) — 0. Since [z]; — 0 would imply that [z]y — 0,
and hence the penalty term would blow up, this shows that

n—0 1

[z(w)h — 75 [z.)1-
Assuming that [z(u)]1 = 1/v2 + ap + O(k?), (9) implies

1—2(1/V2+ap+0(u2)) e
7 20 () V2

Expanding the left hand side, we find

1 —2v2ap + O(1?) — 9%

—— = lim

V3

which shows that a = 1/4.

Problem 5.
The proof is identical to that of Theorem 5.1 so long as one uses the correct Lagrange multiplier estimates

et [le(@n)ll3le(zr))i
[yk]z = m .

t Thanks to Raphael Hauser for this solution.



