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Problem 1.

(a) Suppose that x∗ is a local but not global minimizer. Then there must be some y ∈ C for which

f(y) < f(x∗). But then by convexity αx∗ + (1 − α)y ∈ C, and

f(αx∗ + (1 − α)y) ≤ αf(x∗) + (1 − α)f(y) < αf(x∗) + (1 − α)f(x∗) = f(x∗)

for all α ∈ [0, 1], Hence all points between x∗ and y have a smaller value than f(x∗), and thus x∗

cannot be a local minimizer.

(b) We show that if x∗ and y∗ are distinct global minimizers of the convex function f(x), then so is

αx∗ +(1−α)y∗ for all α ∈ [0, 1]. Since x∗ and y∗ are global minimizers, f(x∗) = f(y∗). By convexity

we thus have

f(αx∗ + (1 − α)y∗) ≤ αf(x∗) + (1 − α)f(y∗) = f(x∗)

But since x∗ is a global minimizer

f(x∗) ≤ f(αx∗ + (1 − α)y∗),

from which we deduce that f(αx∗ + (1 − α)y∗) = f(x∗)

(c) Suppose that x∗ and y∗ are distinct global minimizers, and thus f(x∗) = f(y∗). Then since f is

strictly convex,

f(αx∗ + (1 − α)y∗) < αf(x∗) + (1 − α)f(y∗) = f(x∗)

for any α ∈ (0, 1), which contradicts the global optimality of x∗. Thus there can only be a single

global minimizer.

(d) Simple manipulation shows that for any distinct x and y,

f(αx∗ + (1 − α)y) − αf(x∗) − (1 − α)f(y) = (α2 − α)(x − y)T H(x − y). (0)

But α2 −α ≤ 0 for all α ∈ [0, 1]. Thus (0) shows that f is convex if H is positive semi-definite. If H

is indefinite, f cannot be convex because (0) will be negative if we choose x− y to be an eigenvector

of H corresponding to a negative eigenvalue

(e) Since α2 − α < 0 for all α ∈ (0, 1), (0) shows that f is strictly convex if H is positive definite. If H

has an eigenvalue λ ≤ 0, f cannot be strictly convex because (0) will be less-than-or-equal-to zero if

we choose x − y to be an eigenvector of H corresponding to this eigenvalue.
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Problem 2.

(a) We first need to check that sT Bs ≥ 0 when As = 0, as otherwise the solution lies at infinity. In all

cases B is diagonal, so we write B = diag(b11 b22 b33). It is easy to see that the columns of the

matrix

N =





−1 0

1 0

0 1





form a basis for the null-space of A, so we need to check that

NT BN =

(

b1 + b2 0

0 b3

)

is positive semi-definite. For our first example NT BN has all its eigenvalues at 1, so the minimizer

is finite. The minimizer satisfies









2 0 0 1

0 −1 0 1

0 0 1 0

1 1 0 0

















x1

x2

x3

y









=









1

1

1

2









which gives x = (−2, 4, 1) and y = 5.

(b) In this case NT BN has eigenvalues 0 and 1, so there is a solution if and only if









1 0 0 1

0 −1 0 1

0 0 1 0

1 1 0 0

















x1

x2

x3

y









=









1

1

1

2









is consistent. The system gives x3 = 1, but then the remaining equations lead to both −x2 + y = 1

and −x2 + y = −1. Thus the problem is unbounded from below.

(c) In this case NT BN has eigenvalues −1 and 1, so the problem is unbounded from below, and the

solution lies at infinity.

Problem 3.

Iteration 0: there are no constraints active at the starting point x0 = (1/12, 25/28), so W0 = ∅. The

unconstrained minimizer of q(x) is at x0 + s0 = (1, 1/2), so that s0 = (11/12,−11/28). Considering the

line x0 + αs0, we find that constraint

−[x]1 − [x]2 ≥ −1 (1)

is satisfied for all 0 ≤ α ≤ 1/22, constraint

−3[x]1 − [x]2 ≥ −1.5 (2)

is satisfied for all 0 ≤ α ≤ 5/33, constraint

[x]1 ≥ 0 (3)

is satisfied for all α ≥ 0, and constraint

[x]2 ≥ 0 (4)

is satisfied for all 0 ≤ α ≤ 25/11 > 1, so that the largest permitted stepsize is α0 = 1/22. Hence

x1 = (1/8, 7/8), and W1 = A1 = {(1)}.
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Iteration 1: we must find the minimizer s1 of q(x1 + s) = 1

2
([s]1 − 7/8)2 + 1

2
([s]2 + 3/8)2 subject to

−[s]1 − [s]2 = 0. Trivial calculation reveals that s1 = (5/8,−5/8). Considering the line x1 + αs1, we find

that constraint (2) is satisfied for 0 ≤ α ≤ 1/5, constraint (3) is satisfied for α ≥ 0, and constraint (4) is

satisfied for 0 ≤ α ≤ 7/5 > 1—of course constraint (1) is always satisfied as (1) ∈ W1. Thus the largest

permitted stepsize is α1 = 1/5, and hence x2 = (1/4, 3/4), and W2 = {(1), (2)}.
Iteration 2: now we need to find the minimizer s2 of q(x2 + s) = 1

2
([s]1 − 3/4)2 + 1

2
([s]2 + 1/4)2 subject

to −[s]1 − [s]2 = 0 and −3[s]1 − [s]2 = 0. The solution now is s2 = 0, and the Lagrange multipliers satisfy

the equation
( −1 −3

−1 −1

)( −[y3]1
−[y3]2

)

=

(

3/4

−1/4

)

.

Thus x3 = x2 = (1/4, 3/4) and y3 = (−3/4, 1/2). Since [y3]1 < 0, progress can be made by deleting

constraint (1), and hence W3 = {(2)}.
Iteration 3: we must find the minimizer s3 of q(x3 + s) = 1

2
([s]1 − 3/4)2 + 1

2
([s]2 + 1/4)2 subject to

−3[s]1− [s]2 = 0. Again, trivial calculation reveals that s3 = (3/20,−9/20). Considering the line x3 +αs3,

we find that constraint (1) is satisfied for all α ≥ 0, constraint (3) is satisfied for α ≥ 0 and constraint

(4) is satisfied for 0 ≤ α ≤ 5/3 > 1—of course now constraint (2) is always satisfied as (2) ∈ W3. Thus a

stepsize α4 = 1 is allowed and x4 = (2/5, 3/10). Since the full step has been taken, we need to evaluate

the Lagrange multipliers. We require

( −3

−1

)

(−[y4]2) =

(

3/5

1/5

)

and thus [y4]2 = 1/5 > 0. Hence x∗ = x4 = (2/5, 3/10) is the required minimizer.

Problem 4
†
.

(a) The KKT conditions are

−1 + 2y[x]1 = 0 (5)

−1 + 2y[x]2 = 0 (6)

1 − [x]21 − [x]22 = 0. (7)

If y = 0 then (5) and (6) are violated, so there are no solutions corresponding to this case. If y 6= 0

then [x]1 = [x]2 = 1/(2y), thus (7) implies that the KKT points are (x∗, y∗) and (−x∗,−y∗), where

y∗ = [x∗]1 = [x∗]2 = 1/
√

2.

(b) The quadratic penalty function is

Φ(x, µ) = −[x]1 − [x]2 +
1

2µ
(1 − [x]21 − [x]22)

2.

The stationary points of Φ(x, µ) satisfy

∇xΦ(x, µ) =

(

−1− 2[x]1
µ

(1 − [x]21 − [x]22)

−1− 2[x]2
µ

(1 − [x]21 − [x]22)

)

which implies

µ = −2[x]1(1 − [x]21 − [x]22) = −2[x]2(1 − [x]21 − [x]22). (8)

Since µ > 0, we have 1− [x]21 − [x]22 6= 0, and hence (8) shows that [x]1 = [x]2. Substituting this back

into (8), we find 2[x(µ)]31 − [x(µ)]1 − µ/2 = 0.

(c) We have

[x]1(1 − 2[x]21) + µ/2 = 0. (9)
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So, as µ → 0, it must be the case that [x]1(1−2[x]21) → 0. Since [x]1 → 0 would imply that [x]2 → 0,

and hence the penalty term would blow up, this shows that

[x(µ)]1
µ→0−→ 1√

2
= [x∗]1.

Assuming that [x(µ)]1 = 1/
√

2 + aµ + O(µ2), (9) implies

1 − 2
(

1/
√

2 + aµ + O(µ2)
)2

µ
= − 1

2[x(µ)]1

µ→0−→ − 1√
2
.

Expanding the left hand side, we find

− 1√
2

= lim
µ→0

−2
√

2aµ + O(µ2)

µ
= −2

√
2a,

which shows that a = 1/4.

Problem 5.

The proof is identical to that of Theorem 5.1 so long as one uses the correct Lagrange multiplier estimates

[yk]i
def
= −‖c(xk)‖2

2[c(xk)]i
µk

.

† Thanks to Raphael Hauser for this solution.
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