CNAc: Continuous Optimization Solutions to problem set 4 - linearly constrained optimization and penalty methods

Honour School of Mathematics, Oxford University
Hilary Term 2006, Dr Nick Gould

Problem 1.

(a) Suppose that x_{*} is a local but not global minimizer. Then there must be some $y \in \mathcal{C}$ for which $f(y)<f\left(x_{*}\right)$. But then by convexity $\alpha x_{*}+(1-\alpha) y \in \mathcal{C}$, and

$$
f\left(\alpha x_{*}+(1-\alpha) y\right) \leq \alpha f\left(x_{*}\right)+(1-\alpha) f(y)<\alpha f\left(x_{*}\right)+(1-\alpha) f\left(x_{*}\right)=f\left(x_{*}\right)
$$

for all $\alpha \in[0,1]$, Hence all points between x_{*} and y have a smaller value than $f\left(x_{*}\right)$, and thus x_{*} cannot be a local minimizer.
(b) We show that if x_{*} and y_{*} are distinct global minimizers of the convex function $f(x)$, then so is $\alpha x_{*}+(1-\alpha) y_{*}$ for all $\alpha \in[0,1]$. Since x_{*} and y_{*} are global minimizers, $f\left(x_{*}\right)=f\left(y_{*}\right)$. By convexity we thus have

$$
f\left(\alpha x_{*}+(1-\alpha) y_{*}\right) \leq \alpha f\left(x_{*}\right)+(1-\alpha) f\left(y_{*}\right)=f\left(x_{*}\right)
$$

But since x_{*} is a global minimizer

$$
f\left(x_{*}\right) \leq f\left(\alpha x_{*}+(1-\alpha) y_{*}\right),
$$

from which we deduce that $f\left(\alpha x_{*}+(1-\alpha) y_{*}\right)=f\left(x_{*}\right)$
(c) Suppose that x_{*} and y_{*} are distinct global minimizers, and thus $f\left(x_{*}\right)=f\left(y_{*}\right)$. Then since f is strictly convex,

$$
f\left(\alpha x_{*}+(1-\alpha) y_{*}\right)<\alpha f\left(x_{*}\right)+(1-\alpha) f\left(y_{*}\right)=f\left(x_{*}\right)
$$

for any $\alpha \in(0,1)$, which contradicts the global optimality of x_{*}. Thus there can only be a single global minimizer.
(d) Simple manipulation shows that for any distinct x and y,

$$
\begin{equation*}
f\left(\alpha x_{*}+(1-\alpha) y\right)-\alpha f\left(x_{*}\right)-(1-\alpha) f(y)=\left(\alpha^{2}-\alpha\right)(x-y)^{T} H(x-y) \tag{0}
\end{equation*}
$$

But $\alpha^{2}-\alpha \leq 0$ for all $\alpha \in[0,1]$. Thus (0) shows that f is convex if H is positive semi-definite. If H is indefinite, f cannot be convex because (0) will be negative if we choose $x-y$ to be an eigenvector of H corresponding to a negative eigenvalue
(e) Since $\alpha^{2}-\alpha<0$ for all $\alpha \in(0,1),(0)$ shows that f is strictly convex if H is positive definite. If H has an eigenvalue $\lambda \leq 0, f$ cannot be strictly convex because (0) will be less-than-or-equal-to zero if we choose $x-y$ to be an eigenvector of H corresponding to this eigenvalue.

Problem 2.

(a) We first need to check that $s^{T} B s \geq 0$ when $A s=0$, as otherwise the solution lies at infinity. In all cases B is diagonal, so we write $B=\operatorname{diag}\left(\begin{array}{lll}b_{11} & b_{22} & b_{33}\end{array}\right)$. It is easy to see that the columns of the matrix

$$
N=\left(\begin{array}{cc}
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

form a basis for the null-space of A, so we need to check that

$$
N^{T} B N=\left(\begin{array}{cc}
b_{1}+b_{2} & 0 \\
0 & b_{3}
\end{array}\right)
$$

is positive semi-definite. For our first example $N^{T} B N$ has all its eigenvalues at 1 , so the minimizer is finite. The minimizer satisfies

$$
\left(\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
y
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right)
$$

which gives $x=(-2,4,1)$ and $y=5$.
(b) In this case $N^{T} B N$ has eigenvalues 0 and 1 , so there is a solution if and only if

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
y
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right)
$$

is consistent. The system gives $x_{3}=1$, but then the remaining equations lead to both $-x_{2}+y=1$ and $-x_{2}+y=-1$. Thus the problem is unbounded from below.
(c) In this case $N^{T} B N$ has eigenvalues -1 and 1 , so the problem is unbounded from below, and the solution lies at infinity.

Problem 3.

Iteration 0: there are no constraints active at the starting point $x_{0}=(1 / 12,25 / 28)$, so $\mathcal{W}_{0}=\emptyset$. The unconstrained minimizer of $q(x)$ is at $x_{0}+s_{0}=(1,1 / 2)$, so that $s_{0}=(11 / 12,-11 / 28)$. Considering the line $x_{0}+\alpha s_{0}$, we find that constraint

$$
\begin{equation*}
-[x]_{1}-[x]_{2} \geq-1 \tag{1}
\end{equation*}
$$

is satisfied for all $0 \leq \alpha \leq 1 / 22$, constraint

$$
\begin{equation*}
-3[x]_{1}-[x]_{2} \geq-1.5 \tag{2}
\end{equation*}
$$

is satisfied for all $0 \leq \alpha \leq 5 / 33$, constraint

$$
\begin{equation*}
[x]_{1} \geq 0 \tag{3}
\end{equation*}
$$

is satisfied for all $\alpha \geq 0$, and constraint

$$
\begin{equation*}
[x]_{2} \geq 0 \tag{4}
\end{equation*}
$$

is satisfied for all $0 \leq \alpha \leq 25 / 11>1$, so that the largest permitted stepsize is $\alpha_{0}=1 / 22$. Hence $x_{1}=(1 / 8,7 / 8)$, and $\mathcal{W}_{1}=\mathcal{A}_{1}=\{(1)\}$.

Iteration 1: we must find the minimizer s_{1} of $q\left(x_{1}+s\right)=\frac{1}{2}\left([s]_{1}-7 / 8\right)^{2}+\frac{1}{2}\left([s]_{2}+3 / 8\right)^{2}$ subject to $-[s]_{1}-[s]_{2}=0$. Trivial calculation reveals that $s_{1}=(5 / 8,-5 / 8)$. Considering the line $x_{1}+\alpha s_{1}$, we find that constraint (2) is satisfied for $0 \leq \alpha \leq 1 / 5$, constraint (3) is satisfied for $\alpha \geq 0$, and constraint (4) is satisfied for $0 \leq \alpha \leq 7 / 5>1$-of course constraint (1) is always satisfied as $(1) \in \mathcal{W}_{1}$. Thus the largest permitted stepsize is $\alpha_{1}=1 / 5$, and hence $x_{2}=(1 / 4,3 / 4)$, and $\mathcal{W}_{2}=\{(1),(2)\}$.
Iteration 2: now we need to find the minimizer s_{2} of $q\left(x_{2}+s\right)=\frac{1}{2}\left([s]_{1}-3 / 4\right)^{2}+\frac{1}{2}\left([s]_{2}+1 / 4\right)^{2}$ subject to $-[s]_{1}-[s]_{2}=0$ and $-3[s]_{1}-[s]_{2}=0$. The solution now is $s_{2}=0$, and the Lagrange multipliers satisfy the equation

$$
\left(\begin{array}{ll}
-1 & -3 \\
-1 & -1
\end{array}\right)\binom{-\left[y_{3}\right]_{1}}{-\left[y_{3}\right]_{2}}=\binom{3 / 4}{-1 / 4}
$$

Thus $x_{3}=x_{2}=(1 / 4,3 / 4)$ and $y_{3}=(-3 / 4,1 / 2)$. Since $\left[y_{3}\right]_{1}<0$, progress can be made by deleting constraint (1), and hence $\mathcal{W}_{3}=\{(2)\}$.
Iteration 3: we must find the minimizer s_{3} of $q\left(x_{3}+s\right)=\frac{1}{2}\left([s]_{1}-3 / 4\right)^{2}+\frac{1}{2}\left([s]_{2}+1 / 4\right)^{2}$ subject to $-3[s]_{1}-[s]_{2}=0$. Again, trivial calculation reveals that $s_{3}=(3 / 20,-9 / 20)$. Considering the line $x_{3}+\alpha s_{3}$, we find that constraint (1) is satisfied for all $\alpha \geq 0$, constraint (3) is satisfied for $\alpha \geq 0$ and constraint (4) is satisfied for $0 \leq \alpha \leq 5 / 3>1$-of course now constraint (2) is always satisfied as $(2) \in \mathcal{W}_{3}$. Thus a stepsize $\alpha_{4}=1$ is allowed and $x_{4}=(2 / 5,3 / 10)$. Since the full step has been taken, we need to evaluate the Lagrange multipliers. We require

$$
\binom{-3}{-1}\left(-\left[y_{4}\right]_{2}\right)=\binom{3 / 5}{1 / 5}
$$

and thus $\left[y_{4}\right]_{2}=1 / 5>0$. Hence $x_{*}=x_{4}=(2 / 5,3 / 10)$ is the required minimizer.

Problem 4^{\dagger}.

(a) The KKT conditions are

$$
\begin{align*}
-1+2 y[x]_{1} & =0 \tag{5}\\
-1+2 y[x]_{2} & =0 \tag{6}\\
1-[x]_{1}^{2}-[x]_{2}^{2} & =0 . \tag{7}
\end{align*}
$$

If $y=0$ then (5) and (6) are violated, so there are no solutions corresponding to this case. If $y \neq 0$ then $[x]_{1}=[x]_{2}=1 /(2 y)$, thus (7) implies that the KKT points are $\left(x_{*}, y_{*}\right)$ and $\left(-x_{*},-y_{*}\right)$, where $y_{*}=\left[x_{*}\right]_{1}=\left[x_{*}\right]_{2}=1 / \sqrt{2}$.
(b) The quadratic penalty function is

$$
\Phi(x, \mu)=-[x]_{1}-[x]_{2}+\frac{1}{2 \mu}\left(1-[x]_{1}^{2}-[x]_{2}^{2}\right)^{2}
$$

The stationary points of $\Phi(x, \mu)$ satisfy

$$
\nabla_{x} \Phi(x, \mu)=\binom{-1-\frac{2[x]_{1}}{\mu}\left(1-[x]_{1}^{2}-[x]_{2}^{2}\right)}{-1-\frac{2[x]_{2}}{\mu}\left(1-[x]_{1}^{2}-[x]_{2}^{2}\right)}
$$

which implies

$$
\begin{equation*}
\mu=-2[x]_{1}\left(1-[x]_{1}^{2}-[x]_{2}^{2}\right)=-2[x]_{2}\left(1-[x]_{1}^{2}-[x]_{2}^{2}\right) . \tag{8}
\end{equation*}
$$

Since $\mu>0$, we have $1-[x]_{1}^{2}-[x]_{2}^{2} \neq 0$, and hence (8) shows that $[x]_{1}=[x]_{2}$. Substituting this back into (8), we find $2[x(\mu)]_{1}^{3}-[x(\mu)]_{1}-\mu / 2=0$.
(c) We have

$$
\begin{equation*}
[x]_{1}\left(1-2[x]_{1}^{2}\right)+\mu / 2=0 \tag{9}
\end{equation*}
$$

So, as $\mu \rightarrow 0$, it must be the case that $[x]_{1}\left(1-2[x]_{1}^{2}\right) \rightarrow 0$. Since $[x]_{1} \rightarrow 0$ would imply that $[x]_{2} \rightarrow 0$, and hence the penalty term would blow up, this shows that

$$
[x(\mu)]_{1} \xrightarrow{\mu \rightarrow 0} \frac{1}{\sqrt{2}}=\left[x_{*}\right]_{1} .
$$

Assuming that $[x(\mu)]_{1}=1 / \sqrt{2}+a \mu+O\left(\mu^{2}\right),(9)$ implies

$$
\frac{1-2\left(1 / \sqrt{2}+a \mu+O\left(\mu^{2}\right)\right)^{2}}{\mu}=-\frac{1}{2[x(\mu)]_{1}} \xrightarrow{\mu \rightarrow 0}-\frac{1}{\sqrt{2}}
$$

Expanding the left hand side, we find

$$
-\frac{1}{\sqrt{2}}=\lim _{\mu \rightarrow 0} \frac{-2 \sqrt{2} a \mu+O\left(\mu^{2}\right)}{\mu}=-2 \sqrt{2} a
$$

which shows that $a=1 / 4$.

Problem 5.

The proof is identical to that of Theorem 5.1 so long as one uses the correct Lagrange multiplier estimates

$$
\left[y_{k}\right]_{i} \stackrel{\text { def }}{=}-\frac{\left\|c\left(x_{k}\right)\right\|_{2}^{2}\left[c\left(x_{k}\right)\right]_{i}}{\mu_{k}}
$$

\dagger Thanks to Raphael Hauser for this solution.

