CNAc: Continuous Optimization

Solutions to problem set 5 - interior-point methods

Honour School of Mathematics, Oxford University
Hilary Term 2006, Dr Nick Gould

Problem 1.

(a) The sequence has limit zero and

$$
\sigma_{k+1} / \sigma_{k}^{q}=(\log (k+1))^{q} / \log (k+2)=(\log (k+1) / \log (k+2))(\log (k+1))^{q-1}
$$

which is Q-sublinear for all $q<1$.
(b) Again the sequence has limit zero and

$$
\sigma_{k+1} / \sigma_{k}^{q}=2^{-k-1} / 2^{-q k}=2^{k(q-1)-1}
$$

which diverges for $q>1$, and for $q=1, \kappa=2^{-1}<1$. Thus the convergence is Q-linear.
(c) Once more the sequence has limit zero and

$$
\sigma_{k+1} / \sigma_{k}^{q}=2^{-(k+1)^{2}} / 2^{-q k^{2}}=2^{(q-1) k^{2}-2 k-1}
$$

which again diverges if $q>1$. But when $q=1, \sigma_{k+1} / \sigma_{k}^{q}=2^{-2 k-1}$ which converges to zero, and thus the convergence is Q-superlinear.
(d) And again, the sequence has limit zero and

$$
\sigma_{k+1} / \sigma_{k}^{q}=2^{\left.-2^{(} k+1\right)} / 2^{-q 2^{k}}=2^{-2^{k}(2-q)}
$$

In this case the convergence is Q-superlinear with any Q-factor $q \leq 2$, i.e., Q-quadratic.

Problem 2.

Differentiating $\Phi(x, \mu)$ gives

$$
\begin{equation*}
\nabla_{x} \Phi(x, \mu)=g(x)-\sum_{i=1}^{m} \frac{\mu}{c_{i}^{2}(x)} a_{i}(x) \tag{1}
\end{equation*}
$$

which suggests that

$$
\begin{equation*}
y_{i}(x)=\frac{\mu}{c_{i}^{2}(x)} \tag{2}
\end{equation*}
$$

as Lagrange multiplier estimates.
The proof of the theorem only changes in a few places. The bound (1) on the norm of the inactive Lagrange multiplier estimates becomes

$$
\left\|\left(y_{k}\right)_{\mathcal{I}}\right\|_{2} \leq 2 \mu_{k} \sqrt{|\mathcal{I}|} / \min _{i \in \mathcal{I}}\left|c_{i}^{2}\left(x_{*}\right)\right| .
$$

The same argument then shows that $y_{k} \rightarrow y_{*}$, and hence from (1) that $g\left(x_{*}\right)-A^{T}\left(x_{*}\right) y_{*}=0$. But then (2) gives $y_{k}>0$ and $\left[y_{k}\right]_{i} c_{i}^{2}\left(x_{k}\right)=\mu_{k}$ and hence $y_{*} \geq 0$ and $\left[y_{*}\right]_{i} c_{i}^{2}\left(x_{*}\right)=0$. Thus either $\left[y_{*}\right]_{i}=0$ or $c_{i}\left(x_{*}\right)=0$ and all of the first-order necessary optimality conditions hold.

Problem 3.

(a) The barrier function is

$$
\Phi(x, \mu)=\frac{1}{1+x^{2}}-\mu \log x
$$

Let ω be any desired number. When $x>1, \Phi(x) \leq 1 / 2-\mu \log x<\omega$. for all $x>x_{\omega}=e^{(1-\omega) / \mu}$. Thus Φ is unbounded from below for any $\mu>0$.
(b) The barrier function is

$$
\Phi(x, \mu)=\frac{1}{2} x^{2}-\mu \log (x-2 a)
$$

from which we deduce that $x(\mu)-y(\mu)=0$ where $y(\mu)=\mu /(x(\mu)-a)$. Hence

$$
x(\mu)=a+\sqrt{a^{2}+\mu} \text { and } y(\mu)=\frac{\mu}{\sqrt{a^{2}+\mu}-a}
$$

Since $x_{*}=2 a$ and $y_{*}=2 a$,

$$
x(\mu)-x_{*}=\sqrt{a^{2}+\mu}-a=a\left(\sqrt{1+\mu / a^{2}}-1\right)
$$

But as $1+\frac{1}{4} \mu / a^{2} \leq \sqrt{1+\mu / a^{2}} \leq 1+\mu / a^{2}$ for all $0 \leq \mu / a^{2} \leq 8$, we have

$$
\frac{1}{4} \mu / a \leq\left|x(\mu)-x_{*}\right| \leq \mu / a
$$

which depends linearly on μ. Thus the Q-rate of convergence is linear as a function of μ so long as $a>0$. Likewise

$$
\left|y(\mu)-y_{*}\right| \leq \mu / a
$$

and thus the Lagrange multiplier estimates converge Q-linearly as a function of μ.
(c) The barrier function is

$$
\Phi(x, \mu)=\frac{1}{2} x^{2}-\mu \log x
$$

from which we have $x(\mu)=\mu^{\frac{1}{2}}=y(\mu)$. But $x_{*}=0=y_{*}$, so

$$
x(\mu)-x_{*}=\mu^{\frac{1}{2}} \text { and } y(\mu)-y_{*}=\mu^{\frac{1}{2}} .
$$

The Q-rate of convergence is sub-linear as a function of μ.

