CNAc: Continuous Optimization Solutions to problem set 6 — SQP methods

Honour School of Mathematics, Oxford University Hilary Term 2006, Dr Nick Gould

Problem 1.

(a) Since $\nabla_x F(x_*)$ is non singular, let \mathcal{B} be the set of points for which

$$\|(\nabla_x F(x))^{-1}\|_2 \le 2\|(\nabla_x F(x_*))^{-1}\|_2.$$
(1)

Let γ^L be the Lipschitz constant for $\nabla_x F(x)$ over $\mathcal{B} \bigcup \{x \mid ||x - x_*||_2 \leq 1\}$, and let

$$0 < \kappa < \min(1, 1/(\gamma^L \| (\nabla_x F(x_*))^{-1} \|))$$

be chosen sufficiently small that $\mathcal{X} = \{x \mid ||x - x_*||_2 \leq \kappa\} \subseteq \mathcal{B}$. Suppose that $x_k \in \mathcal{X}$. Then the next Newton iterate x_{k+1} satisfies

$$\begin{aligned} x_{k+1} - x_* &= x_k - x_* - (\nabla_x F(x_k))^{-1} F(x_k) = x_k - x_* - (\nabla_x F(x_k))^{-1} (F(x_k) - F(x_*)) \\ &= (\nabla_x F(x_k))^{-1} (F(x_*) - F(x_k) - (\nabla_x F(x_k)(x_* - x_k))). \end{aligned}$$
(2)

But Theorem 1.3 gives that

$$\|F(x_*) - F(x_k) - \nabla_x F(x_k)(x_* - x_k)\|_2 \le \frac{1}{2}\gamma^L \|x_* - x_k\|_2^2.$$
(3)

Hence (1)-(3) and the Cauchy-Schwartz inequality gives

$$\|x_{k+1} - x_*\|_2 \le \gamma^L \|(\nabla_x F(x_*))^{-1}\|_2 \|x_k - x_*\|_2^2$$
(4)

It then follows from the definition of \mathcal{X} and (4) that $x_{k+1} \in \mathcal{X}$. Hence if $x_0 \in \mathcal{X}$, all $x_k \in \mathcal{X}$, and (4) implies that $\{x_k\}$ converges to x_* Q-quadratically.

(b) The equation has a single (repeated) root $x_* = 0$. The Newton iteration is

$$x_{k+1} = x_k - \frac{x_k^2}{2x_k} = \frac{1}{2}x_k$$

and thus $||x_{k+1} - x_*|| = \frac{1}{2} ||x_k - x_*||$. The convergence rate is Q-linear. The Jacobian at x_* is singular since $\nabla_x = 2x_* = 0$.

Problem 2.

(a) The first-order necessary optimality conditions are that

$$\begin{pmatrix} 4[x_*]_1 - 1\\ 4[x_*]_2 \end{pmatrix} - y_* \begin{pmatrix} 2[x_*]_1\\ 2[x_*]_2 \end{pmatrix} = 0 \text{ and } [x_*]_1^2 + [x_*]_2^2 - 1 = 0.$$

This has two solutions $x_* = (1,0)^T$, with $y_* = 3/2$ and $x_* = (-1,0)^T$, with $y_* = 5/2$. For the former the Hessian of the Lagrangian is I, while for the latter it is -I. Thus the former is an isolated local (and actually global) minimizer, while the latter is an isolated local (and actually global) maximizer.

(b) The SQP step satisfies the equations

$$\begin{pmatrix} 1 & 0 & -2\cos\theta \\ 0 & 1 & -2\sin\theta \\ 2\cos\theta & 2\sin\theta & 0 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ y^+ \end{pmatrix} = - \begin{pmatrix} 4\cos\theta \\ 4\sin\theta \\ 0 \end{pmatrix},$$

which has the solution $s = (\sin^2 \theta, -\cos \theta \sin \theta)^T$ and $y^+ = 2 - \frac{1}{2} \cos \theta$. But then $\cos(x+s) = \sin^2 \theta$ and $f(x+s) - f(x) = \sin^2 \theta$ which are both positive unless $\theta = 0$.

(c) The second-order correction satisfies the equations

$$\begin{pmatrix} 1 & 0 & -2\cos\theta \\ 0 & 1 & -2\sin\theta \\ 2\cos\theta & 2\sin\theta & 0 \end{pmatrix} \begin{pmatrix} s_1^{\rm C} \\ s_2^{\rm C} \\ y^{\rm C} \end{pmatrix} = - \begin{pmatrix} 0 \\ 0 \\ \sin^2\theta \end{pmatrix},$$

which has the solution $s^{\rm C} = (-\frac{1}{2}\cos\theta\sin^2\theta, -\frac{1}{2}\sin^3\theta)^T$ and $y^{\rm C} = -\sin^2\theta$. In particular $||s||_2 = \sin\theta$ but $||s^{\rm C}||_2 = \frac{1}{2}\sin^2\theta$, and thus the second-order correction is small relative to the SQP step.

Problem 3.

The problem we must solve is to minimize $||s||_2$ subject to As = c. As $||\cdot||_2$ is not differentiable, we solve instead the equivalent differentiable problem of minimizing $f(s) = \frac{1}{2} ||s||_2^2$ subject to the same constraints.

First-order necessary optimality conditions are that

$$\nabla_s f(s) = s = A^T y$$
, where $As = -c$.

These are the required equations. Since the Hessian of the Lagrangian is I, second-order sufficiency conditions hold, and thus our equations provide the required solution.

Problem 4.

The problem may be rewritten as

$$\underset{s \in \mathbb{R}^{n}, t \in \mathbb{R}}{\text{minimize}} \quad g_{k}^{T}s + \frac{1}{2}s^{T}B_{k}s + \rho t \text{ subject to } \|c_{k} + A_{k}s\|_{\infty} \leq t \text{ and } \|s\|_{1} \leq \Delta_{k}$$

But $||c_k + A_k s||_{\infty} \leq t$ is the same as $|[c_k + A_k s]_i| \leq t$ for all i, or equivalently $-t \leq [c_k + A_k s]_i \leq t$ and $t \geq 0$. The trust-region constraint $||s||_1 \leq \Delta_k$ is equivalent to the 2^n linear constraints $\sum_{i=1}^n \sigma_i s_i \leq \Delta$ where $\sigma_i = \pm 1$. Thus the ℓ_{∞} QP problem with an ℓ_1 -norm trust region is equivalent to the quadratic program

$$\begin{array}{ll} \underset{s \in \mathbb{R}^{n}, t \in \mathbb{R}}{\text{minimize}} & g_{k}^{T}s + \frac{1}{2}s^{T}B_{k}s + \rho t\\ \text{subject to} & -t \leq [c_{k} + A_{k}s]_{i} \leq t,\\ & t \geq 0,\\ \text{and} & \sum_{i=1}^{n} \sigma_{i}s_{i} \leq \Delta \text{ for all combinations of } \sigma_{i} = \pm 1 \end{array}$$

Problem 5.

The proof is essentially the same as for Theorem 7.1. The only significant difference is that now

$$\nabla_x \Phi(x_k, \mu_k) = g(x_k) + \|c(x_k)\|_2^2 \sum_{i=1}^m a_i(x_k) c_i(x_k) / \mu_k.$$

Now simply replace every mention of $||c(x_k)||_2^2$ by $||c(x_k)||_2^4$ in the original proof.