CNAc: Continuous Optimization Solutions to problem set 6 - SQP methods

Honour School of Mathematics, Oxford University
Hilary Term 2006, Dr Nick Gould

Problem 1.

(a) Since $\nabla_{x} F\left(x_{*}\right)$ is non singular, let \mathcal{B} be the set of points for which

$$
\begin{equation*}
\left\|\left(\nabla_{x} F(x)\right)^{-1}\right\|_{2} \leq 2\left\|\left(\nabla_{x} F\left(x_{*}\right)\right)^{-1}\right\|_{2} . \tag{1}
\end{equation*}
$$

Let γ^{L} be the Lipschitz constant for $\nabla_{x} F(x)$ over $\mathcal{B} \bigcup\left\{x \mid\left\|x-x_{*}\right\|_{2} \leq 1\right\}$, and let

$$
0<\kappa<\min \left(1,1 /\left(\gamma^{L}\left\|\left(\nabla_{x} F\left(x_{*}\right)\right)^{-1}\right\|\right)\right)
$$

be chosen sufficiently small that $\mathcal{X}=\left\{x \mid\left\|x-x_{*}\right\|_{2} \leq \kappa\right\} \subseteq \mathcal{B}$.
Suppose that $x_{k} \in \mathcal{X}$. Then the next Newton iterate x_{k+1} satisfies

$$
\begin{align*}
x_{k+1}-x_{*} & =x_{k}-x_{*}-\left(\nabla_{x} F\left(x_{k}\right)\right)^{-1} F\left(x_{k}\right)=x_{k}-x_{*}-\left(\nabla_{x} F\left(x_{k}\right)\right)^{-1}\left(F\left(x_{k}\right)-F\left(x_{*}\right)\right) \tag{2}\\
& =\left(\nabla_{x} F\left(x_{k}\right)\right)^{-1}\left(F\left(x_{*}\right)-F\left(x_{k}\right)-\left(\nabla_{x} F\left(x_{k}\right)\left(x_{*}-x_{k}\right)\right) .\right.
\end{align*}
$$

But Theorem 1.3 gives that

$$
\begin{equation*}
\left\|F\left(x_{*}\right)-F\left(x_{k}\right)-\nabla_{x} F\left(x_{k}\right)\left(x_{*}-x_{k}\right)\right\|_{2} \leq \frac{1}{2} \gamma^{L}\left\|x_{*}-x_{k}\right\|_{2}^{2} . \tag{3}
\end{equation*}
$$

Hence (1)-(3) and the Cauchy-Schwartz inequality gives

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|_{2} \leq \gamma^{L}\left\|\left(\nabla_{x} F\left(x_{*}\right)\right)^{-1}\right\|_{2}\left\|x_{k}-x_{*}\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

It then follows from the definition of \mathcal{X} and (4) that $x_{k+1} \in \mathcal{X}$. Hence if $x_{0} \in \mathcal{X}$, all $x_{k} \in \mathcal{X}$, and (4) implies that $\left\{x_{k}\right\}$ converges to x_{*} Q-quadratically.
(b) The equation has a single (repeated) root $x_{*}=0$. The Newton iteration is

$$
x_{k+1}=x_{k}-\frac{x_{k}^{2}}{2 x_{k}}=\frac{1}{2} x_{k},
$$

and thus $\left\|x_{k+1}-x_{*}\right\|=\frac{1}{2}\left\|x_{k}-x_{*}\right\|$. The convergence rate is Q-linear. The Jacobian at x_{*} is singular since $\nabla_{x}=2 x_{*}=0$.

Problem 2.

(a) The first-order necessary optimality conditions are that

$$
\binom{4\left[x_{*}\right]_{1}-1}{4\left[x_{*}\right]_{2}}-y_{*}\binom{2\left[x_{*}\right]_{1}}{2\left[x_{*}\right]_{2}}=0 \text { and }\left[x_{*}\right]_{1}^{2}+\left[x_{*}\right]_{2}^{2}-1=0 .
$$

This has two solutions $x_{*}=(1,0)^{T}$, with $y_{*}=3 / 2$ and $x_{*}=(-1,0)^{T}$, with $y_{*}=5 / 2$. For the former the Hessian of the Lagrangian is I, while for the latter it is $-I$. Thus the former is an isolated local (and actually global) minimizer, while the latter is an isolated local (and actually global) maximizer.
(b) The SQP step satisfies the equations

$$
\left(\begin{array}{ccc}
1 & 0 & -2 \cos \theta \\
0 & 1 & -2 \sin \theta \\
2 \cos \theta & 2 \sin \theta & 0
\end{array}\right)\left(\begin{array}{c}
s_{1} \\
s_{2} \\
y^{+}
\end{array}\right)=-\left(\begin{array}{c}
4 \cos \theta \\
4 \sin \theta \\
0
\end{array}\right)
$$

which has the solution $s=\left(\sin ^{2} \theta,-\cos \theta \sin \theta\right)^{T}$ and $y^{+}=2-\frac{1}{2} \cos \theta$. But then $\cos (x+s)=\sin ^{2} \theta$ and $f(x+s)-f(x)=\sin ^{2} \theta$ which are both positive unless $\theta=0$.
(c) The second-order correction satisfies the equations

$$
\left(\begin{array}{ccc}
1 & 0 & -2 \cos \theta \\
0 & 1 & -2 \sin \theta \\
2 \cos \theta & 2 \sin \theta & 0
\end{array}\right)\left(\begin{array}{c}
s_{1}^{\mathrm{C}} \\
s_{2}^{\mathrm{C}} \\
y^{\mathrm{C}}
\end{array}\right)=-\left(\begin{array}{c}
0 \\
0 \\
\sin ^{2} \theta
\end{array}\right)
$$

which has the solution $s^{C}=\left(-\frac{1}{2} \cos \theta \sin ^{2} \theta,-\frac{1}{2} \sin ^{3} \theta\right)^{T}$ and $y^{C}=-\sin ^{2} \theta$. In particular $\|s\|_{2}=\sin \theta$ but $\left\|s^{\mathrm{C}}\right\|_{2}=\frac{1}{2} \sin ^{2} \theta$, and thus the second-order correction is small relative to the SQP step.

Problem 3.

The problem we must solve is to minimize $\|s\|_{2}$ subject to $A s=c$. As $\|\cdot\|_{2}$ is not differentiable, we solve instead the equivalent differentiable problem of minimizing $f(s)=\frac{1}{2}\|s\|_{2}^{2}$ subject to the same constraints.

First-order necessary optimality conditions are that

$$
\nabla_{s} f(s)=s=A^{T} y, \text { where } A s=-c
$$

These are the required equations. Since the Hessian of the Lagrangian is I, second-order sufficiency conditions hold, and thus our equations provide the required solution.

Problem 4.

The problem may be rewritten as

$$
\underset{s \in \mathbb{R}^{n}, t \in \mathbb{R}}{\operatorname{minimize}} g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s+\rho t \text { subject to }\left\|c_{k}+A_{k} s\right\|_{\infty} \leq t \text { and }\|s\|_{1} \leq \Delta_{k}
$$

But $\left\|c_{k}+A_{k} s\right\|_{\infty} \leq t$ is the same as $\left|\left[c_{k}+A_{k} s\right]_{i}\right| \leq t$ for all i, or equivalently $-t \leq\left[c_{k}+A_{k} s\right]_{i} \leq t$ and $t \geq 0$. The trust-region constraint $\|s\|_{1} \leq \Delta_{k}$ is equivalent to the 2^{n} linear constraints $\sum_{i=1}^{n} \sigma_{i} s_{i} \leq \Delta$ where $\sigma_{i}= \pm 1$. Thus the ℓ_{∞} QP problem with an ℓ_{1}-norm trust region is equivalent to the quadratic program

$$
\begin{aligned}
\underset{s \in \mathbb{R}^{n}, t \in \mathbb{R}}{\operatorname{minimize}} & g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s+\rho t \\
\text { subject to } & -t \leq\left[c_{k}+A_{k} s\right]_{i} \leq t \\
& t \geq 0, \\
\text { and } & \sum_{i=1}^{n} \sigma_{i} s_{i} \leq \Delta \text { for all combinations of } \sigma_{i}= \pm 1
\end{aligned}
$$

Problem 5.

The proof is essentially the same as for Theorem 7.1. The only significant difference is that now

$$
\nabla_{x} \Phi\left(x_{k}, \mu_{k}\right)=g\left(x_{k}\right)+\left\|c\left(x_{k}\right)\right\|_{2}^{2} \sum_{i=1}^{m} a_{i}\left(x_{k}\right) c_{i}\left(x_{k}\right) / \mu_{k} .
$$

Now simply replace every mention of $\left\|c\left(x_{k}\right)\right\|_{2}^{2}$ by $\left\|c\left(x_{k}\right)\right\|_{2}^{4}$ in the original proof.

