SECTION C: CONTINUOUS OPTIMISATION
 PROBLEM SET 7: SOLUTIONS

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

Solution to Problem 1. (i) The KKT conditions of are the following,

$$
\begin{align*}
-x_{2} x_{3}+\lambda & =0 \tag{0.1}\\
-x_{1} x_{3}+2 \lambda & =0 \tag{0.2}\\
-x_{2} x_{3}+2 \lambda & =0 \tag{0.3}\\
72-x_{1}-2 x_{2}-2 x_{3} & =0 . \tag{0.4}
\end{align*}
$$

Clearly, x^{*} satisfies (0.4). Moreover, it follows from (0.1),(0.2),(0.3) that

$$
\lambda^{*}=x_{2}^{*} x_{3}^{*}=\frac{1}{2} x_{1}^{*} x_{3}^{*}=\frac{1}{2} x_{1}^{*} x_{2}^{*}=144 .
$$

all of which are satisfied.
(ii) We have

$$
\begin{align*}
Q(x, \mu) & =-x_{1} x_{2} x_{3}+\frac{1}{2 \mu}\left(72-x_{1}-2 x_{2}-2 x_{3}\right)^{2}, \\
\nabla_{x} Q(x, \mu) & =\left[\begin{array}{l}
-x_{2} x_{3}-\frac{1}{\mu}\left(72-x_{1}-2 x_{2}-2 x_{3}\right) \\
-x_{3} x_{1}-\frac{2}{\mu}\left(72-x_{1}-2 x_{2}-2 x_{3}\right) \\
-x_{1} x_{2}-\frac{2}{\mu}\left(72-x_{1}-2 x_{2}-2 x_{3}\right)
\end{array}\right] . \tag{0.5}
\end{align*}
$$

Substituting $x_{1}=2 x_{2}$ and $x_{3}=x_{2}$ into (0.5), all three entries of $\nabla_{x} Q(x, \mu)$ become

$$
-x_{2}^{2}-\frac{1}{\mu}\left(72-6 x_{2}\right) .
$$

Setting this expression to zero, we find x_{2} by solving a quadratic expression:

$$
x_{2}=\frac{3}{\mu}(1 \pm \sqrt{1-8 \mu})=\frac{3(1 \pm \sqrt{1-8 \mu})(1 \mp \sqrt{1-8 \mu})}{\mu(1 \mp \sqrt{1-8 \mu})}=\frac{24}{1 \mp \sqrt{1-8 \mu}} .
$$

Thus, the expression given for $x(\mu)$ satisfies the claim. Moreover, clearly,

$$
x_{2}(\mu) \rightarrow 12,
$$

and then $x_{1}(\mu) \rightarrow 24, x_{3}(\mu) \rightarrow 12$.
(iii) $x_{2}(\mu)=x_{3}(\mu)=24 /(1+1 / 3)=18, x_{1}(\mu)=36$. Moreover,

$$
D_{x x}^{2} Q(x, \mu)=\left[\begin{array}{ccc}
\frac{1}{\mu} & -x_{3}+\frac{2}{\mu} & -x_{2}+\frac{2}{\mu} \\
-x_{3}+\frac{2}{\mu} & \frac{4}{\mu} & -x_{1}+\frac{4}{\mu} \\
-x_{2}+\frac{2}{\mu} & -x_{1}+\frac{4}{\mu} & \frac{4}{\mu}
\end{array}\right]
$$

so that

$$
D_{x x}^{2} Q(x(1 / 9), 1 / 9)=\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 36 & 0 \\
0 & 0 & 36
\end{array}\right] \succ 0 .
$$

(iv) We have

$$
-\frac{g(x(\mu))}{\mu}=-\frac{72-6 \frac{24}{1+\sqrt{1-8 \mu}}}{\mu}=\frac{72}{1+\sqrt{1-8 \mu}} \times \frac{1-\sqrt{1-8 \mu}}{\mu} .
$$

Clearly,

$$
\lim _{\mu \rightarrow 0} \frac{72}{1+\sqrt{1-8 \mu}}=36
$$

Moreover, the rule of Bernoulli-Hôpital implies

$$
\lim _{\mu \rightarrow 0} \frac{1-\sqrt{1-8 \mu}}{\mu}=\lim _{\mu \rightarrow 0} \frac{\frac{8}{2 \sqrt{1-8 \mu}}}{1}=4 .
$$

Hence,

$$
\lim _{\mu \rightarrow 0}-\frac{g(x(\mu))}{\mu}=36 \times 4=\lambda^{*} .
$$

Solution to Problem 2. (i) The KKT conditions are

$$
\begin{align*}
-1+2 \lambda x_{1} & =0 \tag{0.6}\\
-1+2 \lambda x_{2} & =0 \tag{0.7}\\
1-x_{1}^{2}-x_{2}^{2} & =0 \tag{0.8}
\end{align*}
$$

If $\lambda=0$ then (0.6) and (0.7) are violated, so there are no solutions corresponding to this case. If $\lambda \neq 0$ then $x_{1}=x_{2}=1 /(2 \lambda)$, thus (0.8) implies that the KKT points are $\left(x^{*}, \lambda^{*}\right)$ and $\left(-x^{*},-\lambda^{*}\right)$, where $\lambda^{*}=x_{1}^{*}=x_{2}^{*}=1 / \sqrt{2}$.
(ii) We have

$$
Q(x, \mu)=-x_{1}-x_{2}+\frac{1}{2 \mu}\left(1-x_{1}^{2}-x_{2}^{2}\right)^{2} .
$$

The stationary points of the problem

$$
\min _{x \in \mathbb{R}^{2}} Q(x, \mu)
$$

satisfy

$$
\nabla_{x} Q(x, \lambda)=\left[\begin{array}{c}
-1-\frac{2 x_{1}}{\mu}\left(1-x_{1}^{2}-x_{2}^{2}\right) \\
-1-\frac{2 x_{2}}{\mu}\left(1-x_{1}^{2}-x_{2}^{2}\right)
\end{array}\right]=0,
$$

which implies

$$
\begin{equation*}
\mu=-2 x_{1}\left(1-x_{1}^{2}-x_{2}^{2}\right)=-2 x_{2}\left(1-x_{1}^{2}-x_{2}^{2}\right) . \tag{0.9}
\end{equation*}
$$

Since $\mu>0$, we have $1-x_{1}^{2}-x_{2}^{2} \neq 0$, and hence (0.9) shows that $x_{1}=x_{2}$. Substituting this back into (0.9), we find $2 x_{1}^{3}(\mu)-x_{1}(\mu)-\mu / 2=0$.
(iii) We have

$$
\begin{equation*}
x_{1}\left(1-2 x_{1}^{2}\right)+\mu / 2=0 . \tag{0.10}
\end{equation*}
$$

So, as $\mu \rightarrow 0$, it must be the case that $x_{1}\left(1-2 x_{1}^{2}\right) \rightarrow 0$. Since $x_{1} \rightarrow 0$ would imply that $x_{2} \rightarrow 0$, and hence the penalty term would blow up, this shows that

$$
x_{1}(\mu) \xrightarrow{\mu \rightarrow 0} \frac{1}{\sqrt{2}}=x_{1}^{*} .
$$

Using the ansatz $x_{1}(\mu)=1 / \sqrt{2}+a \mu+O\left(\mu^{2}\right)$ where g is some function, (0.10) implies

$$
\frac{1-2\left(1 / \sqrt{2}+a \mu+O\left(\mu^{2}\right)\right)^{2}}{\mu}=-\frac{1}{2 x_{1}(\mu)} \xrightarrow{\mu \rightarrow 0}-\frac{1}{\sqrt{2}} .
$$

Expanding the left hand side, we find

$$
-\frac{1}{\sqrt{2}}=\lim _{\mu \rightarrow 0} \frac{-2 \sqrt{2} a \mu+O\left(\mu^{2}\right)}{\mu}=-2 \sqrt{2} a,
$$

which shows that $a=1 / 4$.
(iv) The new penalty function is

$$
\tilde{Q}(x, \mu)=Q(x, \mu)+\frac{1}{2 \mu} \tilde{g}^{2}(x),
$$

where

$$
\tilde{g}(x)= \begin{cases}x_{2}-x_{1}^{2} & \text { if } x_{1}^{2}>x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

To find the minimisers of \tilde{Q} we solve the first order conditions,

$$
\nabla_{x} \tilde{Q}(x, \mu)=\nabla_{x} Q(x, \mu)+\frac{\tilde{g}(x)}{\mu}\left[\begin{array}{c}
-2 x_{1} \\
1
\end{array}\right]=0 .
$$

Since we want x to be a local minimiser of $Q(x, \mu)$ at the same time, we also need $\nabla_{x}(Q, \mu)=0$, so that the criterion becomes

$$
\begin{aligned}
-2 x_{1} \tilde{g}(x) & =0 \\
\tilde{g}(x) & =0,
\end{aligned}
$$

which is satisfied if and only if the second equation is satisfied. That is, we are looking for the values of μ for which $x_{2}(\mu)-x_{1}^{2}(\mu) \geq 0$, and since $x_{2}(\mu)=x_{1}(\mu)$, this translates into

$$
\frac{1}{\sqrt{2}}+\frac{\mu}{4}+O\left(\mu^{2}\right)-\left(\frac{1}{\sqrt{2}}+\frac{\mu}{4}+O\left(\mu^{2}\right)\right)^{2} \geq 0
$$

which is equivalent to

$$
\frac{\sqrt{2}-1}{2}\left(1-\frac{\mu}{2}-O\left(\mu^{2}\right)\right) \geq 0
$$

But this equation is clearly satisfied for all μ small enough, thus, there exists a value $\bar{\mu}>0$ such that the minimisers of $Q(x, \mu)$ and $\tilde{Q}(x, \mu)$ coincide for all $\mu \in(0, \bar{\mu}]$.

Solution to Problem 3. (i) Looking at the last line, we find

$$
\begin{aligned}
& x_{1}, x_{2} \approx \frac{1}{\sqrt{2}}=0.7071 \\
& x_{3} \approx 0
\end{aligned}
$$

Thus, we are led to suspect that $x^{*}=(1 / \sqrt{2}, 1 / \sqrt{2}, 0)$. Moreover, we have

$$
\begin{aligned}
g_{1}(x)=x_{3} \geq 0 & \text { active, } \\
g_{2}(x)=1-x_{3} \geq 0 & \text { inactive, } \\
g_{3}(x)=1-x_{1}^{3}-x_{3} \geq 0 & \text { inactive, } \\
g_{4}(x)=1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} \geq 0 & \text { active. }
\end{aligned}
$$

This is consistent with our guess for x^{*}, since $\mathcal{A}\left(x^{*}\right)=\{1,4\}$. Furthermore, the theory says

$$
\begin{aligned}
& \lambda_{1}^{*} \approx-\frac{\tilde{g}_{1}(x)}{\mu_{4}}=1.017 \approx 1 \\
& \lambda_{2}^{*} \approx-\frac{\tilde{g}_{2}(x)}{\mu_{4}}=0 \\
& \lambda_{3}^{*} \approx-\frac{\tilde{g}_{3}(x)}{\mu_{4}}=0 \\
& \lambda_{4}^{*} \approx-\frac{\tilde{g}_{4}(x)}{\mu_{4}}=0.7061 \approx \frac{1}{\sqrt{2}} .
\end{aligned}
$$

Thus, we suspect that $\lambda^{*}=(1,0,0,1 / \sqrt{2})$.
(ii) The KKT conditions are

$$
\begin{aligned}
-1+3 \lambda_{3} x_{1}^{2}+2 \lambda_{4} x_{1} & =0, \\
-1-2 \lambda_{4} x_{2} & =0, \\
1-\lambda_{1}+\lambda_{2}+\lambda_{3}+2 \lambda_{4} x_{3} & =0, \\
x_{3} & \geq 0, \\
1-x_{3} & \geq 0, \\
1-x_{1}^{3}-x_{3} & \geq 0, \\
1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} & \geq 0, \\
\lambda_{1}\left(x_{3}\right) & =0, \\
\lambda_{2}\left(1-x_{3}\right) & =0, \\
\lambda_{3}\left(1-x_{1}^{3}-x_{3}\right) & =0, \\
\lambda_{4}\left(1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) & =0, \\
\lambda_{1}, \ldots, \lambda_{4} & \geq 0 .
\end{aligned}
$$

It is easily checked that $\left(x^{*}, \lambda^{*}\right)$ satisfies all these equations and inequalities.
(iii) The theory says

$$
\begin{align*}
& \left|g_{1}(x)\right|=O\left(\mu_{4}\right) \tag{0.11}\\
& \left|g_{4}(x)\right|=O\left(\mu_{4}\right) \tag{0.12}
\end{align*}
$$

It follows from (0.11) that $x_{3}=0$ to about 3 digits of accuracy, which is consistent with the value from the table. In other words, our hunch that $x_{3}^{*}=0$ is not contradicted by the data.

Furthermore, let $\delta_{1}=x_{1}\left(\mu_{4}\right)-x_{1}^{*}$ and $\delta_{2}=x_{2}\left(\mu_{4}\right)-x_{2}^{*}$. If our hunch that $x_{1}^{*}=x_{2}^{*}=1 / \sqrt{2}$ is true, then $\delta_{1}, \delta_{2}>0$, and it follows from (0.12) that the following should hold,
$O\left(\mu_{4}\right)=1-\left(\frac{1}{\sqrt{2}}+\delta_{1}\right)^{2}-\left(\frac{1}{\sqrt{2}}+\delta_{2}\right)^{2}-O\left(\mu_{4}^{2}\right)=-\sqrt{2}\left(\delta_{1}+\delta_{2}\right)-\delta_{1}^{2}-\delta_{2}^{2}-O\left(\mu_{4}^{2}\right)$.
Thus,

$$
\delta_{1}+\delta_{2}=O\left(\mu_{4}\right)=O\left(10^{-3}\right)
$$

and since δ_{1} and δ_{2} are of the same sign, this implies that it should be the case that

$$
\delta_{1}, \delta_{2}=O\left(\mu_{4}\right)=10^{-3}
$$

Indeed, this requirement is consistent with the data. Thus, we do not reject the hunch. This is further confirmed by part (ii), where we showed that $\left(x^{*}, \lambda^{*}\right)$ is a KKT point.

