
ON THE SOLUTION OF EQUALITY CONSTRAINED QUADRATIC
PROGRAMMING PROBLEMS ARISING IN OPTIMIZATION∗

NICHOLAS I. M. GOULD† , MARY E. HRIBAR‡ , AND JORGE NOCEDAL§

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 4, pp. 1376–1395

Abstract. We consider the application of the conjugate gradient method to the solution of large
equality constrained quadratic programs arising in nonlinear optimization. Our approach is based
implicitly on a reduced linear system and generates iterates in the null space of the constraints.
Instead of computing a basis for this null space, we choose to work directly with the matrix of
constraint gradients, computing projections into the null space by either a normal equations or an
augmented system approach. Unfortunately, in practice such projections can result in significant
rounding errors. We propose iterative refinement techniques, as well as an adaptive reformulation
of the quadratic problem, that can greatly reduce these errors without incurring high computational
overheads. Numerical results illustrating the efficacy of the proposed approaches are presented.

Key words. nonlinear optimization, conjugate gradient method, quadratic programming, pre-
conditioning, iterative refinement

AMS subject classifications. 65K10, 49N, 49M, 65F10, 90C06, 90C30

PII. S1064827598345667

1. Introduction. A variety of algorithms for linearly and nonlinearly constrain-
ed optimization (e.g., [9, 14, 15, 36, 37]) use the conjugate gradient (CG) method [28]
to solve subproblems of the form

minimize
x

q(x) = 1
2x

THx+ cTx(1.1)

subject to Ax = b.(1.2)

In nonlinear optimization, the n-vector c usually represents the gradient ∇f of the
objective function or the gradient of the Lagrangian, the n× n symmetric matrix H
stands for either the Hessian of the Lagrangian or an approximation to it, and the
solution x represents a search direction. The equality constraints Ax = b are obtained
by linearizing the constraints of the optimization problem at the current iterate. We
will assume here that A is an m×n matrix, with m < n, and that A has full row rank
so that the constraints Ax = b constitute m linearly independent equations. We also
assume for convenience that H is positive definite in the null space of the constraints,
as this guarantees that (1.1)–(1.2) has a unique solution.

As we shall see in section 2.1, the solution of (1.1)–(1.2) can be characterized in
terms of a nonunique matrix Z whose columns form a basis for the null space of A.
Numerous options are available for computing and representing Z, both explicitly and

∗Received by the editors October 7, 1998; accepted for publication (in revised form) August 22,
2001; published electronically December 18, 2001.

http://www.siam.org/journals/sisc/23-4/34566.html
†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,

Oxfordshire OX11 0QX, England (n.gould@rl.ac.uk).
‡Cray Inc., 411 1st Avenue S, Suite 600, Seattle, WA 98104-2860 (marybeth@cray.com). This

author’s research was supported by Department of Energy grant DE-FG02-87ER25047-A004.
§ECE Department, Northwestern University, Evanston, IL 60208 (nocedal@ece.nwu.edu). This

author’s research was supported by National Science Foundation grant CDA-9726385 and by De-
partment of Energy grant DE-FG02-87ER25047-A004.

1376

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1377

implicitly [11, 12, 19, 26, 41, 44]. In the context of large-scale optimization, opera-
tions with Z and ZT can be performed using the LU factorization of a nonsingular
submatrix of A; see, for example, [20].

In this paper, we consider techniques for solving (1.1)–(1.2) that use a precondi-
tioned CG method and retain feasibility of the iterates by performing projections into
the null space of A without a representation of Z. Unfortunately, a straightforward
implementation of these techniques may produce computational errors that cause de-
teriorating feasibility of the CG iterates. We describe iterative refinement techniques
that can improve accuracy, when needed. We also propose a mechanism for redefining
the vector c adaptively that does not change the solution of the quadratic problem
but that has more favorable numerical properties.

Notation. Throughout the paper ‖·‖ stands for the 2 matrix or vector norm. We
will denote the floating-point unit roundoff (or machine precision) by εm. For double
precision IEEE arithmetic, εm ≈ 10−16. We let κ(A) denote the condition number of
A, i.e., κ(A) = σ1/σm, where σ1 ≥ · · · ≥ σm > 0 are the nonzero singular values of A.

2. The CG method with linear constraints. We now look at applying CG
to approximate the solution of the quadratic problem (1.1)–(1.2). First, we present
CG method for a reduced problem; then we show how to apply CG to the full system
with a scaled projection operator. Finally, we consider the problem (1.1)–(1.2) with
a trust region constraint and show how the given CG methods apply.

2.1. The CG method for the reduced system. A common approach for
solving linearly constrained problems is to eliminate the constraints and solve a re-
duced problem (cf. [21, 39]). More specifically, suppose that Z is an n × (n − m)
matrix spanning the null space of A. Then AZ = 0, the columns of AT together with
the columns of Z span Rn, and any solution x∗ of the linear equations Ax = b can
be written as

x∗ = ATxA
∗ + ZxZ

∗(2.1)

for some vectors xA
∗ ∈ Rm and xZ

∗ ∈ Rn−m. The constraints Ax = b yield

AATxA
∗ = b,(2.2)

which determines the vector xA
∗. Substituting (2.1) into (1.1), and omitting constant

terms (xA
∗ is a constant now), we see that xZ

∗ solves the reduced problem

minimize
xZ

1
2xZ

THZZxZ + cZ
TxZ,(2.3)

where

HZZ = ZTHZ, cZ = ZT (HATxA
∗ + c).

As we have assumed that the reduced Hessian HZZ is positive definite, the solution of
(2.3) is equivalent to that of the linear system

HZZxZ = −cZ.(2.4)

We can now apply the conjugate gradient method to compute an approximate solution
of the problem (2.3), or, equivalently, the system (2.4), and substitute this into (2.1)
to obtain an approximate solution of the quadratic program (1.1)–(1.2).

1378 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

This strategy of computing the normal component ATxA exactly and the tangen-
tial component ZxZ inexactly is followed in many nonlinear optimization algorithms
which ensure that, once linear constraints are satisfied, they remain so throughout
the remainder of the optimization calculation (cf. [21]).

Let us now consider the practical application of the CG method to the reduced
system (2.4). It is well known that preconditioning can improve the rate of convergence
of the CG iteration (cf. [3]). We therefore assume that a preconditioner WZZ is given,
where WZZ is a symmetric, positive definite matrix of dimension n−m, which might
be chosen to reduce the span of, and to cluster, the eigenvalues of W−1

ZZ HZZ. Ideally,
one would like to choose WZZ so that W−1

ZZ HZZ = I, and thus WZZ = ZTHZ is an
ideal preconditioner. Based on this ideal, we consider in this paper preconditioners of
the form WZZ = ZTGZ, where G is a symmetric matrix such that ZTGZ is positive
definite. Some choices of G will be discussed in the next section.

For preconditioners of the form WZZ = ZTGZ, the preconditioned CG method
applied to the (n −m)-dimensional reduced system HZZxZ = −cZ is as follows (see,
e.g., [22, p. 532]).

Algorithm 2.1 (preconditioned CG for reduced systems). Choose an initial
point xZ, compute rZ = ZTHZxZ + cZ, gZ = (ZTGZ)−1rZ, and pZ = −gZ. Repeat the
following steps, until a termination test is satisfied:

α = rZ
T gZ/pZ

TZTHZpZ,(2.5)

xZ ← xZ + αpZ,(2.6)

rZ
+ = rZ + αZTHZpZ,(2.7)

gZ
+ = (ZTGZ)−1rZ

+,(2.8)

β = (rZ
+)T gZ

+/rZ
T gZ,(2.9)

pZ ← −gZ
+ + βpZ,(2.10)

gZ ← gZ
+ and rZ ← rZ

+.(2.11)

This iteration may be terminated, for example, when rZ
T (ZTGZ)−1rZ is suffi-

ciently small.
Several algorithms for large-scale optimization are based on combining a suitable

representation of Z with CG methods for solving the reduced system [18, 33, 46].
Coleman and Verma [13] and Nash and Sofer [38] have proposed strategies for defining
reduced-system preconditioners which approximate ZTHZ in different ways.

We present Algorithm 2.1 for illustrative purposes only. In the next section, we
describe modifications to this algorithm which make it possible to avoid operating
with the null space basis Z.

2.2. The CG method for the full system. If we were to compute an approxi-
mate solution using Algorithm 2.1, it must be multiplied by Z and substituted in (2.1)
to give the approximate solution of the quadratic program (1.1)–(1.2). Alternatively,
we may rewrite Algorithm 2.1 so that the multiplication by Z and the addition of
the term ATxA

∗ is computed within the CG iteration. To do so, we introduce, in the
following algorithm, the n-vectors x, r, g, p which satisfy x = ZxZ +ATxA

∗, ZT r = rZ,
g = ZgZ, and p = ZpZ. We also define the scaled projection matrix

P = Z(ZTGZ)−1ZT .(2.12)

We note, for future reference, that P is independent of the choice of null space basis Z.

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1379

Algorithm 2.2 (preconditioned CG in expanded form). Choose an initial point
x satisfying Ax = b, compute r = Hx+ c, g = Pr, and p = −g. Repeat the following
steps, until a convergence test is satisfied:

α = rT g/pTHp,(2.13)

x← x+ αp,(2.14)

r+ = r + αHp,(2.15)

g+ = Pr+,(2.16)

β = (r+)T g+/rT g,(2.17)

p← −g+ + βp,(2.18)

g ← g+ and r ← r+.(2.19)

This will be the main algorithm studied and further refined in this paper. It is
important to notice that this algorithm, unlike its predecessor, is independent of the
choice of Z. In the next section, different choices for P will be presented.

Note that the vector g+, which we call the preconditioned residual , has been
defined to be in the null space of A. As a result, in exact arithmetic, all the search
directions p generated by Algorithm 2.2 will also lie in the null space of A, and thus the
iterates x will all satisfy Ax = b. However, computed representations of the scaled
projection P can produce rounding errors that may cause p to have a significant
component outside the null space of A, leading to convergence difficulties. This will
be the subject of later sections of the paper.

Several types of stopping tests can be used, but since their choice depends on
the requirements of the optimization method, we shall not discuss them here. In the
numerical tests reported in this paper, we terminate the CG iteration based on the
quantity rT g ≡ rTPr ≡ gTGg. An initial point satisfying Ax = b can be computed,
for example, by solving the normal equations (2.2).

Two simple choices of G are G = diag(H), and G = I. The first choice may
be appropriate when the diagonal elements of H are of widely different magnitudes.
This is the case, for example, in barrier methods for constrained optimization that
handle bound constraints l ≤ x ≤ u by adding terms of the form −µ∑n

i=1(log(xi −
li)+log(ui−xi)) to the objective function for some positive barrier parameter µ. The
second choice, G = I, arises in trust region methods, as we discuss next.

2.3. The CG method and the trust region problem. In trust region meth-
ods, the problem (1.1)–(1.2) also contains a trust region constraint of the form ‖x‖ ≤
∆. Steihaug [43] noted, however, that the trust region constraint can be easily im-
posed if the initial estimate of the solution of (1.1)–(1.2) is chosen to be the vector
zero. In this case the CG iterates are monotonically increasing in norm, and the CG
iteration can be terminated as soon as the norm of one of the iterates exceeds the
trust region radius. No other changes to the CG iteration are needed.

For the reduced problem (2.3), the added trust region constraint has the form
‖ZxZ‖ ≤ ∆z. In order to transform it into a spherical constraint, we introduce the
change of variables xZ ← (ZTZ)−1/2xZ whose effect in the CG iteration is identical to
that of replacing (ZTGZ)−1 by (ZTZ)−1 in (2.8). Thus, the choice G = I arises in
several trust region methods for constrained optimization [9, 15, 16, 27, 36, 40, 47].
Since the role of this matrix is not to produce a clustering of the eigenvalues, we will
regard Algorithm 2.2 with the choice G = I as an unpreconditioned CG iteration.

1380 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

3. The CG algorithm without a null space basis. We are interested here
in using Algorithm 2.2 in such a way that a representation of Z is not necessary. This
will be possible because, as is well known, there are alternative ways of expressing the
scaled projection operator (2.12).

3.1. Computing projections. We now discuss how to apply the projection
operator Z(ZTGZ)−1ZT to a vector without a representation of the null space basis Z.

Let us begin by considering the simple case when G = I, so that P is the orthog-
onal projection operator onto the null space of A. We denote it by PZ, i.e.,

PZ = Z(ZTZ)−1ZT .(3.1)

Thus the preconditioned residual g+ (2.16) is the result of projecting r+ into the null
space of A and can be written as

g+ = PZr
+.(3.2)

This projection can be performed in two alternative ways.
The first is to replace PZ by the equivalent formula

PA = I −AT (AAT)−1A(3.3)

and thus to replace (3.2) with

g+ = PAr
+.(3.4)

We can express this as

g+ = r+ −AT v+,(3.5)

where v+ is the solution of

AAT v+ = Ar+.(3.6)

Noting that (3.6) are the normal equations, it follows that v+ is the solution of the
least squares problem

minimize
v

‖r+ −AT v+‖(3.7)

and that the desired projection g+ is the corresponding residual. The approach (3.5)–
(3.6) for computing the projection g+ = PZr

+ will be called the normal equations
approach. In this paper, we assume that (3.6) will be solved using a Cholesky factor-
ization of AAT .

The second possibility is to express the projection (3.2) as the solution of the
augmented system

(
I AT

A 0

)(
g+

v+

)
=

(
r+

0

)
.(3.8)

In this paper, we assume that this system will be solved by means of a symmetric
indefinite factorization that uses 1 × 1 and 2 × 2 pivots [22]. We refer to this as the
augmented system approach.

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1381

Now let us suppose that preconditioning has the more general form

g+ = PZ:Gr
+, where PZ:G = Z(ZTGZ)−1ZT .(3.9)

This may be expressed as

g+ = PA:Gr
+, where PA:G = G−1

(
I −AT (AG−1AT)−1AG−1

)
(3.10)

if G is nonsingular, and can be found as the solution of

(
G AT

A 0

)(
g+

v+

)
=

(
r+

0

)
(3.11)

whenever zTGz �= 0 for all nonzero z for which Az = 0 (see, e.g., [21, section 5.4.1]).
While (3.10) is far from appealing when G−1 does not have a simple form, (3.11) is a
useful generalization of (3.8). Clearly, the system (3.8) may be obtained from (3.11)
by setting G = I, and the perfect preconditioner results if G = H, but other choices
for G are also possible; all that is required is that zTGz > 0 for all nonzero z for
which Az = 0. The idea of using the projection (3.3) in the CG method dates back
to at least [42]; the alternative (3.11), and its special case (3.8), are proposed in [10],
although [10] unnecessarily requires that G be positive definite. A more recent study
on preconditioning the projected CG method is [13], while the eigenstructure of the
preconditioned system is examined by [35, 37].

Interestingly, preconditioning in Coleman and Verma’s null space approach [13]
requires the solution of systems like (3.11), but it allows A to be replaced by a sparser
matrix. (The price to pay for this relaxation is that products involving a suitable null
space matrix are required.) Such an approach has considerable merit, especially in
the case where using the exact A leads to significant fill-in during the factorization
of the coefficient matrix of (3.11). It remains to be seen how such an approach com-
pares with those we propose here when used in algorithms for large-scale constrained
optimization.

Note that (3.4), (3.8), and (3.11) do not make use of a null space basis Z and
require only factorization of matrices involving A. Significantly, all three forms allow
us to compute an initial point satisfying Ax = b, the first because it relies on a factor-
ization of AAT , from which we can compute x = AT (AAT)−1b, while factorizations
of the system matrices in (3.8) and (3.11) allow us to find a suitable x by solving

(
I AT

A 0

)(
x
y

)
=

(
0
b

)
or

(
G AT

A 0

)(
x
y

)
=

(
0
b

)
.

Unfortunately all three of our proposed alternatives, (3.4), (3.8), and (3.11) for
computing g+ can give rise to significant roundoff errors that prevent the iterates
from remaining in the null space of A, particularly as the CG iterates approach the
solution. The difficulties are caused by the fact that, as the iterations proceed, the
projected vector g+ = Pr+ becomes increasingly small while r+ does not. Indeed,
the optimality conditions of the quadratic program (1.1)–(1.2) state that the solution
x∗ satisfies

Hx∗ + c = ATλ(3.12)

for some Lagrange multiplier vector λ. The vector Hx + c, which is denoted by r
in Algorithm 2.2, will generally stay bounded away from zero, but as indicated by

1382 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

(3.12), it will become increasingly closer to the range of AT . In other words, r will
tend to become orthogonal to Z, and hence, from (3.9), the preconditioned residual
g will converge to zero so long as the smallest eigenvalue of ZTGZ is bounded away
from zero.

That this discrepancy in the magnitudes of g+ = Pr+ and r+ will cause numerical
difficulties is apparent from (3.5), which shows that significant cancellation of digits
will usually take place. The generation of harmful roundoff errors is also apparent
from (3.8) and (3.11) because g+ will be small while the remaining components v+

remain large. Since the magnitude of the errors generated in the solution of (3.8) and
(3.11) is governed by the size of the large component v+, the vector g+ is likely to
contain large relative errors. These arguments will be made more precise in the next
section.

Now consider an example problem. Since the goal of this paper is not to evaluate
the efficiency of particular choices of preconditioners, in all the examples given in this
paper we will choose G = I, which, as we have mentioned, arises in trust region opti-
mization methods without preconditioning. To assess the techniques to be proposed,
we need to measure the closeness of g to the null space of A. For this purpose, we
have chosen

cos θ = max
i

{
AT

i g

||Ai|| ||g||
}
,(3.13)

where Ai is the ith row of A. The value of cos θ provides a relative measure of
orthogonality with the property that, for nonzero g, it vanishes if and only if g lies in
the null space of A.

Example 3.1. We applied Algorithm 2.2 to solve problem CVXQP3 from the
CUTE collection [6], with n = 1000 and m = 750, where the simple bounds were
removed to create a problem of the form (1.1)–(1.2). We used both the normal equa-
tions (3.5)–(3.6) and augmented system (3.8) approaches to compute the projection

and define G = I. The results are given in Figure 3.1, which plots
√

rT g = ||rZ||
(resid), the norm of the null space component of the residual, as a function of the
iteration number. In both cases the CG iteration was terminated when rT g became
negative, which indicates that severe errors have occurred since rT g must be positive.
(Continuing the iteration past this point resulted in oscillations in the norm of the
gradient without any significant improvement.) At iteration 50 of both runs, r is of
order 105 whereas its projection g is of order 10−1. Figure 3.1 also plots (3.13), the
cosine of the angle between the preconditioned residual g and the rows of A. Note
that this cosine, which should be zero in exact arithmetic, increases and indicates that
the CG iterates leave the constraint manifold Ax = b.

We believe it is reasonable to attribute the failure of the CG algorithm to the
deviation of the iterates from the constraint manifold Ax = b, since the derivation of
Algorithm 2.2 from its predecessor is predicated on the assumption that the search
is restricted to this manifold. An analysis by Arioli, Duff, and de Rijk [2] (which
improves on [1]) indicates that, with care, it is possible to ensure that the backward
error1

AT
i g

+/(|A||g+|)i
of the computed g+ is of the order of the machine precision, εm for the case G = I.
(Here | · | denotes the componentwise absolute value.)

1This definition needs to be modified if |A||g+| is (close to) zero. See [1] for details.

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1383

0 20 40 60 80
10

–15

10
–10

10
–5

10
0

10
5

PCG augmented system

iteration

resid
cos

0 20 40 60
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

10
4

10
6

PCG normal equations

iteration

resid
cos

Fig. 3.1. The CG method with two options for the projection.

Errors such as those illustrated in Example 3.1 are not uncommon in optimization
calculations based on Algorithm 2.2. This is of concern, as it may cause the outer
optimization algorithms to fail to achieve feasibility or to require many iterations
to do so. A particular example is given by problem ORTHREGA from the CUTE
collection, which cannot be solved to a prescribed accuracy using the trust region CG
approach of [31]; see [31, pp. 33–34] and section 7.

In sections 5 and 6 we propose several remedies. One of them is based on an
adaptive redefinition of r that attempts to minimize the differences in magnitudes
between g+ = Pr+ and r+. We also describe several forms of iterative refinement for
the projection operation. All these techniques are motivated by the roundoff error
analysis given next.

4. Sources of errors. We now present error bounds that support the argu-
ments made in the previous section, particularly the claim that the most problematic
situation occurs in the latter stages of the CG iteration when g+ is converging to
zero, but r+ is not. That is, we shall presume that ‖r+‖ is much larger than its
projection ‖g+‖. For simplicity, we shall assume henceforth that A has been scaled
so that ‖A‖ = ‖AT ‖ = 1 and shall only consider the simplest possible choice, G = I.
Any computed, as opposed to exact, quantity will be denoted by a subscript c.

First consider the normal equations approach. Here the projection g+ = PAr
+

is given by (3.5), where (3.6) is solved by means of the Cholesky factorization of
AAT . In finite precision, it is straightforward to deduce that the relative error in the
projection satisfies2

‖g+ − g+
c ‖

‖g+‖ ≤ γεmκ2(A)
‖v+‖
‖g+‖ ,(4.1)

2If ‖g+‖ is small, it is preferable to replace the denominators in (4.1) by max(‖g+‖, ε), where ε
is a suitable multiple (e.g., 10) of εm.

1384 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

where γ = 2.5n3/2, using the analysis of [5, p. 49].3 We can thus conclude that the
error in the projection (4.1) can be significant when κ(A) or

‖v+‖
‖g+‖ =

‖v+‖
‖PAr+‖ ≈

‖r+‖
‖PAr+‖(4.2)

is large, the latter approximation resulting from (3.5) and the assumption that ‖A‖ =
1, since then ‖r+‖ ≈ ‖AT v+‖ ≤ ‖v+‖.

When the condition number κ(A) is moderate, the contribution of the ratio (4.2)
to the relative error (4.1) is normally not large enough to cause failure of the outer
optimization calculation. For example, a stopping test in a nonlinear optimization
algorithm, which causes termination when projected residual g+ is (say) 10−6 times
smaller in norm than the initial residual, has a ratio (4.2) of roughly 106. In this
case, using double precision arithmetic, one would have sufficient accuracy to make
progress toward the solution. However, as the condition number κ(A) grows, the loss
of significant digits becomes severe, especially since κ(A) appears squared in (4.1).

Now consider the augmented system approach (3.11). Again we will focus on
the choice G = I for which the preconditioned residual g+ = Pr+ is computed by
solving the system (3.8) using a direct method. There are a number of such methods,
the strategies of Bunch and Kaufman [7] and Duff and Reid [17] being the best
known examples for dense and sparse matrices, respectively. Both form the LDLT

factorization of the augmented matrix (i.e., the matrix appearing on the left-hand
side of (3.8)), where L is unit lower triangular and D is block diagonal with 1× 1 or
2× 2 blocks. This approach is usually (but not always) more stable than the normal
equations approach.

In the case which concerns us most, when ‖g+‖ converges to zero while ‖v+‖ is
bounded, an error analysis [4] shows that

‖g+ − g+
c ‖

‖g+‖ ≤ ηεm(σ1 + κ(A))
‖v+‖
‖g+‖ ,

where η is the product of a low degree polynomial in n + m with the growth factor
from the elimination, while σ1 is the largest singular value of A. It is interesting
to compare this bound with (4.1). We see that the ratio (4.2) again plays a crucial
role in the analysis and that the augmented system approach is likely to give a more
accurate solution g+ than the method of normal equations in this case. This cannot
be stated categorically, however, since the size of the factor η is difficult to predict.

The residual update strategy described in section 6 aims at minimizing the size
of the ratio (4.2), and, as we will see, has a highly beneficial effect in Algorithm 2.2.
Before presenting it, we discuss various iterative refinement techniques designed to
improve the accuracy of the projection operation.

5. Iterative refinement. Iterative refinement is known as an effective proce-
dure for improving the accuracy of a solution obtained by a method that is not
backwards stable. We will now consider how to use it in the context of our normal
equations and augmented system approaches.

3The bound assumes that there are no errors in the formation of AAT and Ar+ or in the
backsolves using the Cholesky factors; this is a reasonable assumption in our context [29, section 19.4]
provided that εmκ2(A) is somewhat smaller than 1. It also ignores less significant errors that arise
in the computation of the matrix-vector product AT v+ and in the subtraction r+ − AT v+ given
in (3.5).

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1385

5.1. Normal equations approach. Let us suppose that we choose G = I and
that we compute the projection PAr

+ via the normal equations approach (3.5)–(3.6).
An appealing idea for trying to improve the accuracy of this computation is to apply
the projection repeatedly. Therefore, rather than computing g+ = PAr

+ in (2.16), we
let g+ = PA · · ·PAr

+, where the projection is applied as many times as necessary to
keep the errors small. The motivation for this multiple projections technique stems
from the fact that the computed projection g+

c = (PAr
+)c is likely to have only a

small component, consisting almost entirely of rounding errors, outside of the null
space of A. Therefore, applying the projection PA to the first projection g+

c will give
an improved estimate because the ratio (4.2) will now be much smaller. By repeating
this process we may hope to obtain further improvement of accuracy.

The multiple projection technique may simply be described as setting g+
0 = r+

and applying the following algorithm.

Algorithm 5.1 (multiple projections—normal equations). Set i = 0 and repeat
the following steps until a convergence test is satisfied:

solve L(LT v+
i) = Ag+

i ,(5.1)

set g+
i+1 = g+

i −AT v+
i ,(5.2)

i← i+ 1,

where L is the Cholesky factor of AAT .

We note that this method is only appropriate when G = I, although a simple
variant is possible when G is diagonal. Also note that the multiple projection tech-
nique is equivalent to performing fixed-precision iterative refinement on the normal
equations. In the multiple projections approach, the projection g+ is updated at each
iteration. In fixed-precision iterative refinement of the normal equations, the solution
of the normal equations v+ is updated and the projection g+ is recomputed from this
solution.

We resolved the problem given in Example 3.1 using multiple projections and
setting G = I. At every CG iteration, we measured the cosine (3.13) of the angle
between g and the columns of A. If this cosine was greater than 10−12, multiple
projections were applied until the cosine was smaller than this value. Using this
strategy, we were able to reduce the norm of the null space component of the residual
to around 10−16 of its initial value.

In the optimization setting we would apply multiple corrections only when needed,
e.g., when the angle between the projected residual and the columns of A is not very
small; see Algorithm 6.2 in section 6.1.

It is straightforward to analyze the multiple projections strategy (5.1)–(5.2) pro-
vided that, as before, we make the simplifying assumptions that A has norm one and
that the only rounding errors we make are in forming L and solving (5.1). In this
case, we have that

‖(g+
i+1)c − g+‖ ≤ ‖∆v+

i ‖ ≤
(
γεmκ2(A)

)i ‖v+‖,(5.3)

and thus that the error converges R-linearly to zero with constant γεmκ2(A), so
long as this factor is less than 1. Of course, the reduction in error at this rate
cannot be sustained indefinitely, as the other errors we have ignored in (5.1)–(5.2)
become important. Nonetheless, one would expect (5.3) to reflect the true behavior
until ‖(g+

i+1)c − g+‖ approaches a small multiple of the unit roundoff εm. It should

1386 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

be stressed, however, that this approach is still limited by the fact that the condi-
tion number of A appears squared in (5.3); improvement can be guaranteed only if
γεmκ2(A) < 1.

We should also note that multiple projections are almost identical in their form
and numerical properties to fixed precision iterative refinement to the least squares
problem [5, p. 125]. Since a perturbation analysis of the least squares problem
[5, Theorem 1.4.6] gives

‖g+ − g+
c ‖ = O

(
εm(‖v‖+ κ(A)‖g+‖)) ,(5.4)

and as the dependence here on the condition number is linear—not quadratic as
we have seen for (4.1)—we may deduce that the normal equations approach is not
backward stable [5, section 2.2]. Indeed, since κ(A) is multiplied by ‖g+‖, when g+ is
small the effect of the condition number of A is much smaller in (5.4) than in (4.1). It
is precisely under such circumstances that fixed-precision iterative refinement is most
appropriate [5, section 2.9.3].

We should mention two other iterative refinement techniques that one might con-
sider which are either not effective or not practical in our context.

The first is to use fixed-precision iterative refinement [5, section 2.9] to attempt to
improve the solution v+ of the normal equations (3.6). This, however, will generally
be unsuccessful because fixed-precision iterative refinement improves only a measure
of backward stability [22, p. 126], and the Cholesky factorization is already a backward
stable method. We have performed numerical tests and found no improvement from
this strategy.

However, as is well known, iterative refinement will often succeed if extended
precision is used to evaluate the residuals. We could therefore consider using extended
precision iterative refinement to improve the solution v+ of the normal equations (3.6).
So long as εmκ(A)2 < 1, and the residuals of (3.6) are smaller than one in norm, we
can expect that the error in the solution of (3.6) will decrease by a factor εmκ(A)2

until it reaches O(εm). However, since optimization algorithms normally use double
precision arithmetic for all their computations, extending the precision may not be
simple or efficient, and this strategy is not suitable for general purpose software.

For the same reason we will not consider the use of extended precision in
(5.1)–(5.2) or in the iterative refinement of the least squares problem.

5.2. Augmented system approach. We can apply fixed precision iterative
refinement to the solution obtained from the augmented system (3.11). This gives the
following iteration.

Algorithm 5.2 (iterative refinement—augmented system). Repeat the following
steps until a convergence test is satisfied.

Compute ρg = r+ −Gg+ −AT v+ and ρv = −Ag+,

solve

(
G AT

A 0

)(
∆g+

∆v+

)
=

(
ρg
ρv

)
,

and update g+ ← g+ +∆g+ and v+ ← v+ +∆v+.

Note that this method is applicable for general preconditioners G. The general
analysis of Higham [30, Theorem 3.2] indicates that, if the condition number of A is
not too large, we can expect high relative accuracy in v+ and good absolute accuracy
in g+ in most cases.

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1387

We solved the problem given in Example 3.1 using this iterative refinement tech-
nique. As before, we measured the angle between g and the columns of A at every
CG iteration. Iterative refinement was applied so long as the cosine of this angle was
greater than 10−12. We observed that

√
rT g decreased almost as much as with the

multiple projections approach.
In our experience, one iterative refinement step is normally enough to provide

good accuracy, but we have encountered cases in which two or three steps are benefi-
cial. As in the case of the multiple projections using the normal equations, we would
apply this refinement technique selectively in optimization algorithms.

6. Residual update strategy. We have seen that significant roundoff errors
may occur in the computation of the projected residual g+ if this vector is much
smaller than the residual r+. As discussed in the paragraph preceding Example 3.1,
the reason for this error is cancellation. We now describe a procedure for redefining
r+ so that its norm is closer to that of g+. This will dramatically reduce the roundoff
errors in the projection operation and thus nearly eliminate the need to use iterative
refinement.

We begin by noting that the iterates x of Algorithm 2.2 are theoretically unaf-
fected if, immediately after computing r+ in (2.15), we redefine it as

r+ ← r+ −AT y(6.1)

for some y ∈ Rm. This equivalence is due to the fact that r+ appears only in (2.16)
and (2.17) and that we have both PAT y = 0, and (g+)TAT y = 0. It follows that we
can redefine r+ by means of (6.1) in either the normal equations approach (3.4) and
(3.9) or in the augmented system approach (3.8) and (3.11), and the results would,
in theory, be unaffected.

Having this freedom to redefine r+, we seek the value of y that minimizes

‖r+ −AT y‖G−1 ,(6.2)

where ‖ · ‖G−1 is the dual (semi-) norm to the norm sTGs defined on the manifold
As = 0, and where we require that G is positive definite over this manifold (see [14]).
This dual norm is convenient, since the vector y that solves (6.2) is precisely y = v+

from (3.11). This gives rise to the following modification of the CG iteration.
Algorithm 6.1 (preconditioned CG with residual update). Choose an initial

point x satisfying Ax = b and compute r = Hx+ c. Find the vector y that minimizes
‖r−AT y‖G−1 ; this can be done by solving (6.2) and setting y ← v+. Set r ← r−AT y,
compute g = Pr, and set p = −g. Repeat the following steps until a convergence test
is satisfied:

α = rT g/pTHp,(6.3)

x← x+ αp,(6.4)

r+ = r + αHp,(6.5)

compute y that minimizes (6.2),(6.6)

r+ ← r+ −AT y,(6.7)

g+ = Pr+,(6.8)

β = (r+)T g+/rT g,(6.9)

p← −g+ + βp,(6.10)

g ← g+ and r ← r+.(6.11)

1388 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

This procedure can be improved by adding iterative refinement of the projection
operation in (6.8). In this case, at most one or two iterative refinement steps should
be used. The added cost of this algorithm is the storage and computation of y each
iteration.

Notice that there is a simple interpretation of steps (6.6)–(6.8). We first obtain
y by solving (6.2), and as we have indicated the required value is y = v+ from (3.11).
However, (3.11) may be rewritten as

(
G AT

A 0

)(
g+

0

)
=

(
r+ −AT v+

0

)
,(6.12)

and thus when we obtain g+ in step (6.8), it is as if we had instead found it by solving

(
G AT

A 0

)(
g+

u+

)
=

(
r+ −AT v+

0

)
.(6.13)

Comparing (6.12) and (6.13), it follows that u+ = 0 in exact arithmetic, although all
we can expect in floating point arithmetic is that the computed u+ will be very small,
provided of course that (6.13) is solved in a stable fashion. The advantage of using
(6.13) compared to (3.11) is that the solution in the latter may be dominated by the
large components v+, while in the former g+ are the (relatively) large components,
and thus we can expect to find them with high relative accuracy if (6.13) is solved
in a stable fashion. Viewed in this way, we see that steps (6.6)–(6.8) are actually a
limited form of iterative refinement in which the computed v+, but not the computed
g+ which is discarded, is used to refine the solution. This “iterative semirefinement”
has been used in other contexts [8, 23].

There is another interesting interpretation of the reset r ← r−AT y performed at
the start of Algorithm 6.1. In the parlance of optimization, r = Hx+c is the gradient
of the objective function (1.1) and r − AT y is the gradient of the Lagrangian for
the problem (1.1)–(1.2). The vector y computed from (6.2) is called the least squares
Lagrange multiplier estimate. (It is common, but not always the case, for optimization
algorithms to set G = I in (6.2) to compute these multipliers.) Thus in Algorithm 6.1
we propose that the initial residual be set to the current value of the gradient of the
Lagrangian, as opposed to the gradient of the objective function.

One could ask whether it is sufficient to do this resetting of r at the beginning of
Algorithm 6.1 and omit steps (6.6)–(6.7) in subsequent iterations. Our computational
experience shows that, even though this initial resetting of r causes the first few CG
iterations to take place without significant errors, deviations from the null space due to
rounding errors arise in subsequent iterations. The strategy proposed in Algorithm 6.1
is safe in that it ensures that r is small at every iteration.

As it stands, Algorithm 6.1 would appear to require two products with P , or, at
the very least, one with P to perform (6.8) and some other means, such as (3.6), to
determine y. As we shall now see, this need not be the case.

6.1. The case G = I. There is a particularly efficient implementation of the
residual update strategy when G = I. We can redefine r without the extra cost of
storing and computing y as required by Algorithm 6.1. In Algorithm 6.2 below, we
present the residual update for G = I, combined with iterative refinement. It is this
algorithm that is used in the numerical tests in section 7.

Algorithm 6.2 (residual update and iterative refinement for G = I). Choose
an initial point x satisfying Ax = b, compute r = Hx + c, r ← Pr, g ← Pr, where

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1389

the projection is computed by the normal equations (3.4) or augmented system (3.8)
approaches, and set p = −g. Choose a tolerance θmax. Repeat the following steps until
a convergence test is satisfied:

α = rT g/pTHp,(6.14)

x← x+ αp,(6.15)

r+ = r + αHp,(6.16)

g+ = Pr+,(6.17)

apply iterative refinement to Pr+, if necessary,

until (3.13) is less than θmax,

β = (r+)T g+/rT g,(6.18)

p← −g+ + βp,(6.19)

g ← g+ and r ← g+.(6.20)

This algorithm was derived from noting that (6.2) is precisely the objective of the
least squares problem (3.7) that occurs when computing Pr+ via the normal equations
approach, and therefore the desired value of y is nothing other than the vector v+

in (3.6) or (3.8). Furthermore, the first block of equations in (3.8) shows that r+ −
AT v+ = g+. Therefore, when G = I the computation (6.7) can be replaced by r+ ←
Pr+ and (6.8) is g+ = Pr+. In other words, we have applied the projection operation
twice, and this is a special case of the multiple projections approach described in the
previous section.

Further, (6.7) can be written as r+ ← Pr+, or r+ = Pr + PHαp, and therefore
(6.8) is

g+ = P (Pr + PHαp).(6.21)

As the CG iteration progresses we can expect αp, but not r, to become small. There-
fore, we will apply the projection twice to r but only once to Hαp. Thus (6.21) is
replaced by

g+ = P (Pr +Hαp),(6.22)

which is mathematically equivalent to (6.21), since PP = P . This expression is
convenient because the term Pr was computed at the previous CG iteration, and
therefore we can obtain (6.22) by simply setting r ← g+ in (6.11) instead of r ← r+.

Also note that the numerator in the definition (6.3) of α now becomes gT g,
which equals rTPg = rT g. Thus the formula for α is theoretically the same as in
Algorithm 6.1, but the symmetric form α = gT g/pTHp has the advantage that its
numerator can never be negative, as is the case with (6.3) when rounding errors
dominate the projection operation.

We solved the problem given in Example 3.1 using this residual update strategy
with G = I. Both the normal equations and augmented system approaches were
equally effective in this case. The cosine (3.13) of the angle between the preconditioned
residual and the columns of A remained very small as the computation proceeded.
For the normal equations approach this cosine was of order 10−14 throughout the
CG iteration; for the augmented system approach it was of order 10−15. We also
noted that we were able to obtain higher accuracy than with the iterative refinement
strategies described in the previous section.

1390 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

6.2. General G. We can also improve upon the efficiency of Algorithm 6.1 for
general G using slightly outdated information. The idea is simply to use the v+

obtained when computing g+ in (6.8) as a suitable y rather than waiting until after
the following step (6.5) to obtain a slightly more up-to-date version. The resulting
iteration is as follows.

Algorithm 6.3 (residual update strategy for general G). Apply Algorithm 6.1
with the following two changes:

omit (6.6)–(6.7),
replace (6.11) by g ← g+ and r ← r+ − AT v+, where v+ is obtained as a
by-product when using (3.11) to compute (6.8).

Thus a single projection in step (6.8) is needed for each iteration. Notice, however,
that for general G, the extra matrix-vector product AT v+ will be required, since we no
longer have the relationship g+ = r+−AT v+ that we exploited when G = I. Although
we have not experimented on this idea for this paper, it has proved to be beneficial
in other similar circumstances [23] and provides the backbone for the developing HSL
[32] nonconvex quadratic programming packages HSL VE12 [14] (interior-point) and
HSL VE19 [25] (active set). See also [34] for a thorough discussion of existing and
new preconditioners along these lines and the results of some comparative testing.

7. Numerical results. We now test the efficacy of the techniques proposed in
this paper on a collection of quadratic programs of the form (1.1)–(1.2). The problems
were generated during the last iteration of the interior point method for nonlinear
programming described in [9] when this method was applied to a set of test problems
from the CUTE [6] collection. We apply the CG method without preconditioning,
i.e., with G = I, to solve these quadratic programs.

We use the augmented system and normal equations approaches to compute pro-
jections, and for each we compare the standard CG iteration (stand), given by Al-
gorithm 2.2, with the iterative refinement (ir) techniques described in section 5 and
the residual update strategy combined with iterative refinement (update) as given in
Algorithm 6.2. The results are given in Table 7.1. The first column gives the problem
name and the second gives the dimension of the quadratic program. To test the reli-
ability of the techniques proposed in this paper we used a very demanding stopping
test: the CG iteration was terminated when

√
rT g ≤ 10−12. This stopping test would

not be used in practice; rather, we wanted to observe the level of accuracy that could
be achieved with each approach.

In these experiments we included several other stopping tests in the CG iteration
that are typically used by trust region methods for optimization. We terminate if the
number of iterations exceeds 2(n − m), where n − m denotes the dimension of the
reduced system (2.4); a superscript 1 in Table 7.1 indicates that this limit was reached.
The CG iteration was also stopped if the length of the solution vector is greater than
a “trust region radius” that is set by the optimization method (see [9]). We use
a superscript 2 to indicate that this safeguard was activated, and note that in these
problems only excessive rounding errors can trigger it. Finally we terminate if pTHp <
0, indicated by 3, or if significant rounding error resulted in rT g < 0, indicated by
4. The presence of any superscript indicates that the residual test

√
rT g ≤ 10−12

was not met. Note that the standard CG iteration was not able to meet the residual
stopping test for any of the problems in Table 7.1 but that iterative refinement and
update residual were successful in most cases.

Table 7.2 reports the CPU time for the problems in Table 7.1. Note that the
times for the standard CG approach (stand) should be interpreted with caution, since

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1391

Table 7.1
Number of CG iterations for the different approaches. 1 indicates that the iteration limit was

reached, 2 indicates termination from trust region bound, 3 indicates negative curvature was detected,
and 4 indicates that rT g < 0.

Augmented system Normal equations
Problem dim stand ir update stand ir update
CORKSCRW 147 162 9 10 44 9 11
COSHFUN 61 1241 1241 58 1241 1241 55
DIXCHLNV 50 91 12 12 54 12 12
DTOC3 999 184 6 6 20001 6 6
DTOC6 1000 64 16 16 24 16 16
HAGER4 1000 1934 350 348 10574 351 349
HIMMELBK 10 221 3 3 74 3 3
NGONE 97 04 67 56 04 65 60
OPTCNTRL 9 204 12 4 201 2 5
OPTCTRL6 39 901 801 16 801 801 16
OPTMASS 402 04 5 6 93 5 5
ORTHREGA 261 134 163 163 143 163 163

ORTHREGF 805 84 18 18 74 18 18
READING1 101 34 5 5 34 5 5

Table 7.2
CPU time in seconds. 1 indicates that the iteration limit was reached, 2 indicates termination

from trust region bound, 3 indicates negative curvature was detected, and 4 indicated that rT g < 0.

Augmented system Normal equations
Problem dim stand ir update stand ir update
CORKSCRW 147 0.852 1.18 0.88 0.154 0.74 0.70
COSHFUN 61 0.371 0.661 0.18 0.291 0.541 0.13
DIXCHLNV 50 1.90 0.49 0.30 0.24 0.50 0.30
DTOC3 999 0.484 0.9 0.60 148.481 0.91 0.47
DTOC6 1000 0.324 1.51 0.9 0.084 1.16 0.66
HAGER4 1000 14.234 54.43 34.30 70.574 40.48 24.71
HIMMELBK 10 0.131 0.07 0.04 0.034 0.05 0.04
NGONE 97 0.164 21.19 10.69 0.984 125.24 77.35
OPTCNTRL 9 0.064 0.20 0.06 0.051 0.28 0.07
OPTCTRL6 39 0.361 0.651 0.08 0.291 0.451 0.06
OPTMASS 402 0.064 0.57 0.43 0.343 0.38 0.25
ORTHREGA 261 0.984 2.023 1.143 0.913 2.523 1.883

ORTHREGF 805 0.464 1.84 1.06 1.144 5.65 2.95
READING1 101 0.244 0.92 0.40 0.294 1.31 0.85

in some of these problems it terminated prematurely. We include the times for this
standard CG iteration only to show that the iterative refinement and residual update
strategies do not greatly increase the cost of the CG iteration.

Next we report on three problems for which the stopping test
√

rT g ≤ 10−12

could not be met by any of the variants. For these three problems, Table 7.3 provides
the least residual norm attained for each strategy.

As a final but indirect test of the techniques proposed in this paper, we report
the results obtained with KNITRO (an interior point nonlinear optimization code
described in [9]) on 29 nonlinear programming problems from the CUTE collection.
This code applies the projected CG method to solve a quadratic program at each iter-
ation. The CG iteration was terminated when

√
rT g ≤ 0.1

√
rT0 g0, which is much less

stringent than the termination tests used above. We used the augmented system and
normal equations approaches to compute projections, and for each of these strategies
we tried the standard CG iteration (stand) and the residual update strategy (update)

1392 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

Table 7.3
The least residual norm

√
rT g attained by each option.

Augmented system Normal equations
Problem dim stand ir update stand ir update
OBSTCLAE 900 2.3D-07 1.5D-07 5.5D-08 2.3D-07 9.9D-08 4.2D-08
SVANBERG 500 1.8D-07 9.9D-10 5.7D-12 7.7D-08 8.8D-10 2.9D-10
TORSION1 400 3.5D-09 3.5D-09 2.8D-09 5.5D-08 4.6D-08 3.2D-09

Table 7.4
Number of function evaluations and projections required by the optimization method for different

variants of the CG iteration. n denotes the number of variables, m the number of general constraints
(equalities or inequalities), excluding simple bounds, “st” is the standard CG method, and “up”
includes residual updates.

Augmented system Normal equations
f evals projections f evals projections

Problem n m st up st up st up st up
CORKSCRW 456 350 64 61 458 422 65 61 460 411
COSHFUN 61 20 44 40 2213 1025 49 40 2998 1025
DIXCHLNV 100 50 19 19 83 83 19 19 83 83
GAUSSELM 14 11 25 26 92 93 28 41 85 97
HAGER4 2001 1000 18 18 281 281 50 18 2458 281
HIMMELBK 24 14 33 33 88 89 39 33 135 89
NGONE 100 1273 216 133 1763 864 217 187 1821 1146
OBSTCLAE 1024 0 26 26 6233 6068 26 26 6236 6080
OPTCNTRL 32 20 41 51 152 183 *** 50 *** 179
OPTMASS 1210 1005 36 39 129 145 218 39 427 145
ORTHREGF 1205 400 30 30 73 73 30 30 73 73
READING1 202 100 40 40 130 130 43 40 151 130
SVANBERG 500 500 35 35 7809 4265 40 35 10394 4764
TORSION1 484 0 19 19 2174 2140 19 19 2449 2120
DTOC2 2998 1996 6 6 215 215 6 6 215 215
DTOC3 2999 1998 7 7 16 16 26 7 73 16
DTOC4 2999 1998 5 5 8 8 5 5 8 8
DTOC5 1999 999 6 6 12 12 6 6 12 12
DTOC6 2001 1000 12 12 48 46 64 12 166 46
EIGENA2 110 55 4 4 4 4 4 4 4 4
EIGENC2 464 231 25 25 264 268 25 25 270 269
GENHS28 300 298 4 4 7 7 4 4 7 7
HAGER2 2001 1000 5 5 12 12 5 5 12 12
HAGER3 1001 500 4 4 9 9 4 4 9 9
OPTCTRL6 122 80 14 10 97 75 75 10 880 75
ORTHREGA 517 256 8 8 38 38 *** 48 *** 99
ORTHREGC 505 250 10 10 60 60 10 10 60 60
ORTHREGD 203 100 11 11 23 23 11 11 23 23

with iterative refinement described in Algorithm 6.2. Now we were concerned with
reducing feasibility errors in the CG iterates, not to be able to satisfy a stringent CG
termination test, but to ensure that the outer optimization algorithm would converge.
The results are given in Table 7.4, where “fevals” denotes the total number of evalua-
tions of the objective function of the nonlinear problem, and “projections” represents
the total number of times that a projection operation was performed during the op-
timization. A *** indicates that the optimization algorithm was unable to locate the
solution.

Note that the total number of function evaluations is roughly the same for all
strategies, but there are a few cases where the differences in the CG iteration cause
the algorithm to follow a different path to the solution. This is to be expected when

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1393

solving nonlinear problems. Note that for the augmented system approach, the resid-
ual update strategy changes the number of projections significantly only in a few
problems, but when it does the improvements are very substantial. On the other
hand, we observe that for the normal equations approach (which is more sensitive to
the condition number κ(A)) the residual update strategy gives a substantial reduction
in the number of projections in about half of the problems. It is interesting that with
the residual update, the performance of the augmented system and normal equations
approaches is very similar.

8. Conclusions. We have studied the properties of the projected CG method
for solving quadratic programming problems of the form (1.1)–(1.2). Due to the form
of the preconditioners used by some nonlinear programming algorithms we opted for
not computing a basis Z for the null space of the constraints but instead projecting
the CG iterates using a normal equations or augmented system approach. We have
given examples showing that in either case significant roundoff errors can occur and
have presented an explanation for this.

We proposed several remedies. One is to use iterative refinement of the augmented
system or normal equations approaches. An alternative is to update the residual at
every iteration of the CG iteration, as described in section 6. The latter can be
implemented particularly efficiently in the unpreconditioned (G = I) case.

Our numerical experience indicates that updating the residual almost always suf-
fices to keep the errors to a tolerable level. Iterative refinement techniques are not as
effective by themselves as the update of the residual but can be used in conjunction
with it, and the numerical results reported in this paper indicate that this com-
bined strategy is both economical and accurate. The techniques described here are
important ingredients within the evolving large scale nonlinear programming pack-
ages KNITRO and GALAHAD, as well as the HSL [32] QP modules HSL VE12 and
HSL VE19.

Acknowledgments. The authors would like to thank Andy Conn and Philippe
Toint for their helpful input during the early stages of this research. They are also
grateful to Margaret Wright and two anonymous referees for their helpful suggestions.

REFERENCES

[1] M. Arioli, J.W. Demmel, and I.S. Duff, Solving sparse linear systems with sparse backward
errors, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165–190.

[2] M. Arioli, I.S. Duff, and P.P.M. de Rijk, On the augmented system approach to sparse
least-squares problems, Numer. Math., 55 (1989), pp. 667–684.

[3] O. Axelsson. Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1996.
[4] Å. Björck, Pivoting and stability in augmented systems, in Numerical Analysis 1991, D.F.

Griffiths and G.A. Watson, eds., Pitman Res. Notes Math. Ser. 260, Longman Scientific
and Technical, Harlow, UK, 1992, pp. 1–16.

[5] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[6] I. Bongartz, A.R. Conn, N.I.M. Gould, and Ph. L. Toint, CUTE: Constrained and un-

constrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.
[7] J.R. Bunch and L.C. Kaufman, Some stable methods for calculating inertia and solving

symmetric linear equations, Math. Comput., 31 (1977), pp. 163–179.
[8] P. Businger and G.H. Golub, Linear least squares solutions by Housholder transformations,

Numer. Math., 7 (1965), pp. 269–276.
[9] R.H. Byrd, M.E. Hribar, and J. Nocedal, An interior point algorithm for large-scale non-

linear programming, SIAM J. Optim., 9 (1999), pp. 877–900.
[10] T.F. Coleman, Linearly constrained optimization and projected preconditioned conjugate gra-

dients, in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, J. Lewis,
ed., SIAM, Philadelphia, 1994, pp. 118–122.

1394 NICHOLAS I. M. GOULD, MARY E. HRIBAR, AND JORGE NOCEDAL

[11] T.F. Coleman and A. Pothen, The null space problem I: Complexity, SIAM J. Algebraic
Discrete Methods, 7 (1986), pp. 527–537.

[12] T.F. Coleman and A. Pothen, The null space problem II: Algorithms, SIAM J. Algebraic
Discrete Methods, 8 (1987), pp. 544–563.

[13] T.F. Coleman and A. Verma, A Preconditioned Conjugate Gradient Approach to Linear
Equality Constrained Minimization, Technical report, Department of Computer Sciences,
Cornell University, Ithaca, NY, 1998.

[14] A.R. Conn, N.I.M. Gould, D. Orban, and Ph. L. Toint, A primal-dual trust-region algo-
rithm for non-convex nonlinear programming, Math. Program., 87 (2000), pp. 215–249.

[15] J.E. Dennis Jr., M. El-Alem, and M.C. Maciel, A global convergence theory for general
trust-region based algorithms for equality constrained optimization, SIAM J. Optim., 7
(1997), pp. 177–207.

[16] J.E. Dennis, M. Heinkenschloss, and L.N. Vicente, Trust-region interior-point SQP algo-
rithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998),
pp. 1750–1794.

[17] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[18] J.C. Dunn, Second-order multiplier update calculations for optimal control problems and re-
lated large scale nonlinear programs, SIAM J. Optim., 3 (1993), pp. 489–502.

[19] J.R. Gilbert and M.T. Heath, Computing a sparse basis for the null-space, SIAM J. Algebraic
Discrete Methods, 8 (1987), pp. 446–459.

[20] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright, Maintaining LU factors of a
general sparse matrix, Linear Algebra Appl., 88/89 (1987), pp. 239–270.

[21] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London,
1981.

[22] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[23] N.I.M. Gould, Iterative methods for ill-conditioned linear systems from optimization, in Non-
linear Optimization and Related Topics, G. Di Pillo and F. Giannessi, eds., Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1999, pp. 123–142.

[24] N.I.M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint, Solving the trust-region subproblem
using the Lanczos method, SIAM J. Optim., 9 (1999), pp. 504–525.

[25] N.I.M. Gould and Ph. L. Toint, An Iterative Active-Set Method for Large-Scale Quadratic
Programming, Technical report RAL-TR-2001-026, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 2001.

[26] M.T. Heath, R.J. Plemmons, and R.C. Ward, Sparse orthogonal schemes for structural
optimization using the force method, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 514–532.

[27] M. Heinkenschloss and L.N. Vicente, Analysis of Inexact Trust Region Interior-Point SQP
Algorithms, Technical report CRPC-TR95546, Center for Research on Parallel Computers,
Houston, TX, 1995.

[28] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards, 49 (1952), pp. 409–436.

[29] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[30] N.J. Higham, Iterative refinement for linear systems and LAPACK, IMA J. Numer. Anal., 17

(1997), pp. 495–505.
[31] M.E. Hribar, Large-Scale Constrained Optimization, Ph.D. thesis, Department of Electrical

Engineering and Computer Science, Northwestern University, Evanston, IL, 1996.
[32] HSL, A collection of Fortran codes for large scale scientific computation, 2000.
[33] D. James, Implicit nullspace iterative methods for constrained least squares problems, SIAM

J. Matrix Anal. Appl., 13 (1992), pp. 962–978.
[34] C. Keller, Constraint Preconditioning for Indefinite Linear Systems, D.Phil. thesis, Oxford

University, Oxford, UK, 2000.
[35] C. Keller, N.I.M. Gould, and A.J. Wathen, Constraint preconditioning for indefinite linear

systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.
[36] M. Lalee, J. Nocedal, and T.D. Plantenga, On the implementation of an algorithm for

large-scale equality constrained optimization, SIAM J. Optim., 8 (1998), pp. 682–706.
[37] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact Newton method for large sparse

equality constrained nonlinear programming problems, Numer. Linear Algebra Appl., 5
(1998), pp. 219–247.

[38] S.G. Nash and A. Sofer, Preconditioning reduced matrices, SIAM J. Matrix Anal. Appl., 17
(1996), pp. 47–68.

[39] J. Nocedal and S.J. Wright, Numerical Optimization, Springer-Verlag, Heidelberg, Berlin,
New York, 1999.

SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS 1395

[40] T.D. Plantenga, A trust region method for nonlinear programming based on primal interior-
point techniques, SIAM J. Sci. Comput., 20 (1999), pp. 282–305.

[41] R.J. Plemmons and R.E. White, Substructuring methods for computing the null space of
equilibrium matrices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 1–22.

[42] B.T. Polyak, The conjugate gradient method in extremal problems, U.S.S.R. Comput. Math.
Math. Phys., 9 (1969), pp. 94–112.

[43] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[44] J.M. Stern and S.A. Vavasis, Nested dissection for sparse nullspace bases, SIAM J. Matrix
Anal. Appl., 14 (1993), pp. 766–775.

[45] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I.S. Duff, ed., Academic Press, London, 1981, pp. 57–88.

[46] Ph. L. Toint and D. Tuyttens, On large-scale nonlinear network optimization, Math. Pro-
gram. Ser. B, 48 (1990), pp. 125–159.

[47] L.N. Vicente, Trust-Region Interior-Point Algorithms for a Class of Nonlinear Program-
ming Problems, Ph.D. thesis, Report TR96-05, Department of Computational and Applied
Mathematics, Rice University, Houston, TX, 1995.

