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Abstract

We consider a working-set method for solving large-scale quadratic programming problems for which there is
no requirement that the objective function be convex. The methods are iterative at two levels, one level relating to
the selection of the current working set, and the second due to the method used to solve the equality-constrained
problem for this working set. A preconditioned conjugate gradient method is used for this inner iteration, with the
preconditioner chosen especially to ensure feasibility of the iterates. The preconditioner is updated at the conclusion
of each outer iteration to ensure that this feasibility requirement persists. The well-known equivalence between the
conjugate-gradient and Lanczos methods is exploited when finding directions of negative curvature. Details of an
implementation—the Fortran 90 packageQPA in the forthcomingGALAHAD library—are given.
 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we consider a working-set method for finding a second-order critical point for the so-
calledl1QP problem

minimize
x∈Rn

f (x)= 1

2
〈x,Hx〉 + 〈c, x〉 + ρ

∥∥(Ax − b)−
∥∥

1, (1.1)
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whereA andH are respectivelym by n andn by n symmetric matrices,ρ is a given (fixed) parameter,
and the components ofw− are the minima ofwi and zero. We shall refer to the components〈ai, x〉 − bi
of Ax − b as itsconstituents. In practice, such problems often include “equality” terms

ρ
∣∣〈ai, x〉 − bi

∣∣,
“two-sided bounds”

ρ
(
min

(
0, 〈ai , x〉 − li

)+ max
(
0, 〈ai, x〉 − ui

))
,

or “simple bounds”

ρ
(
min(0, xi − li )+ max(0, xi − ui)

)
,

and frequently there may be good reasons to use different penalty parameters for different terms, but
for simplicity we shall ignore theses possibilities here except as to mention that such terms provide
scope for algebraic improvements. We shall make no assumption thatH is positive definite, and thus
cannot guarantee that any critical point found actually solves (1.1). Notwithstanding, we shall refer to
any second-order critical point as a solution to (1.1).

Our particular interests are twofold. Firstly, we are interested in solving nonlinear programming
problems using Sl1QP method of Flecher [18] ([19, Section14.4]), which involves a sequence of
subproblems of the form (1.1). Secondly, we are interested in solving quadratic programming (QP)
problems

minimize
x∈Rn

1

2
〈x,Hx〉 + 〈c, x〉 subject toAx � b

using an exact penalty function formulation (1.1) for some sufficiently largeρ (see, for example, [13,
32]).

The reader may wonder why we are considering yet another active/working-set method for the
problem, especially since interior-point methods are now usually considered to be superior when there are
many variables. The answer is simply that there are certain circumstances in which we believe working-
set methods still have advantages. The most obvious is when there is gooda priori knowledge of what the
optimal active set might be, since then one may anticipate there being relatively few working-set changes
before the optimal set is found. Interior point methods tend not to be able to take full advantage of such
a priori information, preferring instead to calculate the optimal active setab initio. Successive quadratic
programming (SQP) algorithms for general nonlinear programming (NLP) problems are cases in point.
It is well known (see [38]) that these methods tend to predict the optimal active set for the NLP as they
approach a limit point, and that the optimal active set from one QP is a good starting set for the next.

1.1. Notation

The symmetric matrixM is said to besecond-order sufficientwith respect to them by n matrixA if
and only if the augmented matrix

K =
(
M AT

A 0

)
(1.2)

is nonsingular and has preciselym negative eigenvalues. This is equivalent to requiring that〈y,My〉> 0
for all nonzeroy satisfyingAy = 0, or to the reduced matrixNTMN being positive definite, where the
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columns ofN span the null-space ofA (see, for instance, [9,26]). IfM is second-order sufficient, the
augmented matrixK is said to bestandard. Otherwise, it isnonstandard. Theinertia of K is the triple,

In(K)= (k+, k−, k0),

wherek+, k− andk0 are respectively the numbers of positive, negative and zero eigenvalues ofK . Thus
K is standard if and only if In(K)= (n,m,0).

2. The basic iteration

At the start of thekth iteration, a set of constituents is assigned to theworkingsetWk. The constituents
in the working set are chosen as a (sub)set of theactivesetAk = A(xk),

A(x)= {
i | 〈ai, x〉 = bi

}
,

wherexk is the current estimate of the required solution. We shall also refer to theviolated and satisfied
sets, Vk = V(xk) andSk = S(xk) respectively, where

V(x)= {
i | 〈ai, x〉< bi

}
and S(x)= {

i | 〈ai, x〉> bi
}
.

Notice that the active, violated and satisfied sets divideRn into 3m partitions.
An iteration is made up of three basic tasks. Firstly, a search directionsk is chosen to reduce the

quadratic function

q(xk + s)= 1

2
〈s,Hs〉 + 〈gk, s〉,

where

gk =Hxk + c− ρ
∑

i∈Vk∪Ak\Wk

ai ,

while at the same time ensuring that the constituents in the working set stay active by requiring that
Aks = 0, where the rows ofAk are those ofA indexed byWk . Secondly, a stepαk is taken in the
direction sk to reducef (xk + αsk). Finally, xk+1 is set toxk + αksk , and the working set is updated to
ensure progress, if at all possible, at the next iteration. We now discuss each of these stages in turn.

2.1. Computing the search direction

The search direction subproblem is to

minimize
s∈Rn

1

2
〈s,Hs〉 + 〈gk, s〉 subject toAks = 0, (2.1)

where the rows ofAk are the vectorsaT
i , i ∈ Wk . As we wish to be able to solve large problems, we do

not necessarily intend to solve (2.1) very accurately. In fact, we prefer to use an iterative method, since
this gives us more flexibility.

In the absence of the constraintAks = 0, the method of conjugate gradients (see [34]) would be the
method of choice, particularly if applied with a suitable preconditioner. This immediately suggests that
if we were able implicitly to “project” the iterates into the null-space ofAk , we might be able to recreate
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a conjugate gradient-like method for constrained problems. Certainly, convex quadratic programming
methods based upon conjugate directions have been suggested by many authors (see, for example, [4,2,
33]). The method we shall describe here is due to Gould et al. [28], but has its origins in the proposals of
Polyak [37] and Coleman [11].

Let us assume, for the time being, thatH is second-order sufficient with respect toAk , and thus that
the solution to (2.1) occurs at its critical point. LetPk be a projector into the null-space ofAk . Then our
method may be described as follows:

Algorithm 1 (Preconditioned conjugate gradients for(2.1)).
Givens0,k = 0, setg0,k = gk , and let

v0,k = Pkg0,k (2.2)

andp0,k = −v0,k . Forj = 0,1, . . . , until convergence, perform the iteration,

σj,k = 〈gj,k, vj,k〉/〈pj,k,Hpj,k〉
sj+1,k = sj,k + σj,kpj,k

gj+1,k = gj,k + σj,kHpj,k

vj+1,k = Pk gj+1,k (2.3)

βj,k = 〈gj+1,k, vj+1,k〉/〈gj,k, vj,k〉
pj+1,k = −vj+1,k + βj,kpj,k

The matrix Pk plays the dual role of projecting the iterates into the required null-space, and
preconditioning the iteration. A number of forms are possible, but the most appealing is to solve the
augmented system(

Mk AT
k

Ak 0

)(
vj+1,k

wj+1,k

)
=
(
gj+1,k

0

)
(2.4)

for some auxiliary vectorwj+1,k and second-order sufficient matrixMk . Thus, in practice, we use
Algorithm 1, but replace (2.2)/(2.3) by (2.4). The resulting method is known as theprojected
preconditioned conjugate gradientmethod. Of course, we solve (2.4) using one of the stable symmetric,
indefinite factorization methods introduced by Bunch and Parlett [7] and later improved by Bunch and
Kaufman [6] and Fletcher [17] in the dense case, Duff et al. [16] and Duff and Reid [15] in the sparse
case, and Ashcraft et al. [1] in all cases.

Notice that the first-order optimality conditions imply that the solution to (2.1) satisfies the augmented
system(

H AT
k

Ak 0

)(
s

−y
)

=
(−gk

0

)
. (2.5)

Therefore Algorithm 1 is only appropriate if the cost of solving (2.5), is significantly greater than that
for a sequence of (2.4), and the art is in choosing the preconditioner so that this is so. IfMk is diagonal,
range- or null-space approaches (see [25, Section 5.4.1]) are sometimes preferable to (2.4), illustrating
the flexibility of Algorithm 1.

We must enter a word of caution here. While Algorithm 1 may appear to be attractive, it is crucial
that the lower block equation in (2.4) be solved accurately, as otherwise, recurrences which rely on
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vj+1,k lying in the null-space ofAk may be invalid. A particularly troublesome case occurs whengj+1,k

is large butvj+1,k is small, for then (2.4) indicates thatwj+1,k will usually be large—such cases often
occur in SQP methods when approaching the solution of a nonlinear program. In this case, although it
is possible to compute the composite vector(vj+1,k wj+1,k) to high relative accuracy provided a stable
factorization is used, the componentsvj+1,k may have little relative accuracy. A number of precautions,
including iterative refinement, have been proposed by Gould et al. [28], but the most effective appears to
be to note that (2.4) is equivalent to(

Mk AT
k

Ak 0

)(
vj+1,k

uj+1,k

)
=
(
gj+1,k −AT

k yj+1,k

0

)
(2.6)

wherewj+1,k = yj+1,k + uj+1,k , and to chooseyj+1,k so that‖gj+1,k − AT
k yj+1,k‖ is small. For then

vj+1,k may be computed with much higher relative accuracy, and the iterates lie substantially closer to
the null-space ofAk . Pickingyj+1,k as the previously-generateduj,k appears to be effective in practice.

We now turn to the possibility thatH is not second-order sufficient with respect toAk . If this is
the case, the problem either has a subspace of weak minimizers, or is unbounded from below. The first
strategy which suggests itself is to follow the proposal of Steihaug [40] and to monitor〈pj,k,Hpj,k〉
as the iteration progresses. If this is negative,pj,k is a direction of negative curvature; if it is zero and
〈gj,k, vj,k〉 �= 0, pj,k is a direction of linear infinite descent. In either case, we picksk = ±pj,k/‖pj,k‖,
where the sign is chosen to ensure that〈sk, gk〉 � 0.

However, since such the direction is somewhat arbitrary, we prefer a slightly more sophisticated
approach which aims to produce a vector which is closer to the eigenvector corresponding to the most
negative eigenvalue ofH constrained to lie in the subspaceAks = 0. We merely note, as have many
others, that the conjugate gradient and Lanczos methods are two different ways of producing a basis for
the same (Krylov) subspace, and while the former is most usually associated with solving linear systems,
the latter is best known as a method for finding (in particular) extreme eigenvalues of large symmetric
matrices. We shall not give details here, since our method has essentially already been defined in full by
Gould et al. [29]—the (GLTR) method given in this paper, and the resulting HSL [35] codeVF05, also
involved a trust-region constraint, which we may either set to a large value (which will bias the solution
towards the most negative leftmost eigenvalue) or a smaller value which increases the contribution from
the projected preconditioned steepest descent direction,−Pkgk . Experience reported in Gould et al. [29]
has suggested that letting the Lanczos method run for a few (say 5) iterations beyond the first at which
negative curvature is encountered can often significantly improve the quality of the negative curvature
direction found.

2.2. Computing the step

This part is entirely standard. The objective functionφk(α) = f (xk + αsk) is a piecewise quadratic
function ofα, and we aim to find its first local minimizer asα increases from zero. We call the values at
which 〈ai , xk +αsk〉 = bi , i /∈Wk , thebreakpoints, and, starting fromα0,k = 0, we examine the behaviour
of φk(α) between consecutive breakpointsαj,k < αj+1,k until a suitable value is found. There are three
possibilities.

Firstly, the slope ofφk(α) may be strictly positive for all smallα � αj,k . In this case, we choose the
local minimizerαk = αj,k . Secondly,φ(α) may have a minimizerαj,k < αMj,k < αj+1,k. If this occurs, we
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chooseαk = αMj,k . Finally, the required minimizer may lie at or beyondαj+1,k, and we compute the next
breakpointαj+2,k as well as updating the slope atαj+1,k.

To examine these possibilities, we need to be able to calculate and sort the breakpoints in increasing
order, and to evaluateφk(α) asα increases. For efficiency the sorting is perhaps best achieved using the
Heapsort method (see [42]), which is particularly appropriate, as it performs a partial sort from which the
(i+1)st smallest member of a set may be found very efficiently once the firsti smallest are known. Thus
breakpoints beyond the minimizer need not be completely sorted. The functionφk(α) may be expressed
as

φk(α)= φj,k + αφ′
j,k + 1

2
α2φ′′

k ,

whereφ′′
k = 〈sk,Hsk〉, for all αj,k � α < αj+1,k . A simple calculation reveals that

φ′
j+1,k = φ′

j,k + ρ
∑

i∈Bj+1,k

∣∣〈ai , sk〉∣∣ and φj+1,k = φj,k + αj+1,k
(
φ′
j,k − φ′

j+1,k

)
,

whereBj+1,k are the indices of constituents which define the(j + 1)st breakpoint. Of course, the initial
values are

φ0,k = f (xk) and φ′
0,k = 〈gk, sk〉 − ρ

∑
i∈Bj+1,0

〈ai, sk〉,

where

Bj+1,0 = {
1� i �m | 〈ai, xk〉< bi, or 〈ai, xk〉 = bi and〈ai, sk〉< 0

}
.

One other eventuality is that the last breakpoint is not a local minimizer, and the curvature is negative.
In this case,f (x) is unbounded from below along the arcxk + αsk , and the algorithm should be
terminated. Strictly, this might be viewed asthe major weakness of the whole approach (particularly
if we are interested in solving quadratic programs), sincef (x) is (globally) unbounded from below
wheneverH is indefinite.

We have to be slightly cautious here, since it is an open question as far as we know (and contrary to
claims made by Conn and Sinclair [13]) whether the algorithm as it stands might actually cycle infinitely
through different setsVk ∪Ak \Wk for the same working setWk . This might happen, for example, if the
unconstrained minimizer ofφk(α) lies between breakpoints beyond the first for allk � k0 for somek0.
In order to prevent this (remote) possibility, the simplest precaution is to stop at the breakpoint directly
before the unconstrained minimizer once ever so often, since this will result in a gradual increase in the
number of constituents in the working set, and once|Wk| = n, this working set cannot reappear.

An alternative to the forward-stepping strategy given here might be to perform a Armijo-type
backtracking linesearch, as suggested in broadly similar circumstances by Bertsekas [3], Calamai and
Moré [8] and Toint [41], to avoid stepping through a large number of breakpoints. We have not
investigated this possibility.

2.3. Updating the working set

The final step of our iteration is to decide what the working set should be for the next iteration.
There are four possible outcomes from the linesearch. Firstly, we may detect thatf (x) is unbounded
from below, in which case the algorithm will be terminated. Secondly, we may stop at a breakpoint. If
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this is the case,oneof the constituents which becomes active atxk+1 should be added toWk to form
Wk+1. Notice that in principle it does not matter which constituent is added, since the gradient of each is
linearly independent of the rows ofAk because〈ai, sk〉 �= 0 whileAsk = 0, but it may be wise to pick the
constituent for which|〈ai, sk〉|/‖ai‖2‖sk‖2 is largest as this then gives the “most” independentai . The
third possibility is that the linesearch stops beyond the first breakpoint, but between subsequent ones.
In this case, the minimizer cannot occur within the current partition, but may nevertheless might result
from the same working set. We thus simply adjustgk+1 to account for the change in partition, but retain
Wk+1 = Wk. The final possibility is that the linesearch stops before the first breakpoint, and it is this case
that we now consider.

Ideally, the computed search direction would be the solution to (2.1). In this case,xk+1 is a candidate
solution to the original problem. In order to investigate this possibility, we need to compute Lagrange
multipliers at the solution to (2.1). If the exact solution to (2.1) has been found, the vectorvj+1,k will be
zero. As a consequence (2.4) implies that

AT
kwj+1,k = gj+1,k =Hsj+1,k + gk =Hsk + gk,

and thus thatyk = wj+1,k are Lagrange multipliers. If 0� yk � 1, standard optimality conditions (see,
for example, [19]) imply thatxk+1 is a first-order critical point for (1.1). (Note that we cannot be sure
that this is a second-order critical point unless eitherMk =H , in which caseH is second-order sufficient
with respect toAk or the whole of the null space ofAk has been investigated by Algorithm 1, since then
the algorithm will have established thatH is positive definite in this space.) On the other hand, if there
is a component[yk]i /∈ [0,1], further progress is possible (provided other active constituents not present
in the current working set do not interfere) simply by deleting the corresponding constituent from the
working set. As is common in such a case, there may be more than one candidate for deletion, and there
are a number of possible rules to decide which is ultimately chosen.

Of course, one of the advantages of using the preconditioned projected conjugate gradient method is
the scope for terminating the iteration well before optimality. This has, unfortunately, a downside as well.
So long as we solve (2.1) (and so long as a suitable anticycling rule is chosen), we ensure that we cannot
return to the working setWk once we have leftxk+1. Thus, as there are only a finite number of possible
working sets, our algorithm would be finite. If we do not solve (2.1) exactly, and we subsequently remove
a constituent from the working set based onapproximateLagrange multiplier estimates, it may re-enter
at a later stage. Unless care is taken thiszigzaggingbetween working sets may lead to nonconvergence
(see, for example, [19, Section 11.3]). We are unaware of suitable termination rules for the conjugate
gradient method that guarantee to prevent this, except, of course, to run the method until the gradient is
“numerically” zero.

3. Algebraic issues

The computation is divided into a sequence of what might loosely be calledmajor iterations—the
name is perhaps slightly inappropriate since all that we really mean by a major iteration is a sequence of
consecutive iterations{k, k + 1, k + 2, . . . , ke} for which the iterationk sets the scene for its successors
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(as doeske + 1 for the next major iteration). At the start of each major iteration, a factorization of the
preconditioning matrix

Kk =
(
Mk AT

k

Ak 0

)
,

involving the set of constituents in the current working set, is found—we shall call the set of these
constituents at the start of a major iteration thereferenceset. The symmetric matrixMk is chosen so
that it is second-order sufficient, but is otherwise arbitrary. In particular, there is no requirement that
Mk be positive definite, although if this were the case it would automatically be second-order sufficient.
Common choices areMk =H (if this is allowed, and ifKk does not suffer significant fill-in) orMk = I .
We stress here that although it is desirable to choose a good approximation ofH , the overriding concern
is thatMk be second-order sufficient.

Having determined the factors ofKk , all subsequent linear systems during the current major iteration
are solved using the Schur complement method. That is to say, if we require the solution of a system(

M) AT
)

A) 0

)(
s)
t)

)
= −

(
g)
c)

)
, (3.1)

for )� k, and if

Mk =M),

the solution is obtained using the factors ofKk and an appropriate Schur complement involvingMk , Ak

andA)—notice here that thus far we do not allowM) to change during the course of a major iteration.
To be specific, suppose without loss of generality, that

Ak =
(
AC

AD

)
, A) =

(
AC

AA

)
and c) =

(
cC
cA

)
, (3.2)

that is that the rowsAC are common toAk andA), but that the rowsAD in Ak are replaced by the rows
AA in A). In this case, the solution to (3.1) also satisfies the expanded system


Mk AT

C AT
D AT

A 0
AC 0 0 0 0
AD 0 0 0 I

AA 0 0 0 0
0 0 I 0 0





s)
tC
tD
tA
u)


= −



g)
cC
0
cA
0


 , (3.3)

where we recover

t) =
(
tC
tA

)
.

Notice that the leading 3 by 3 block of the coefficient matrix of (3.3) is simplyKk , and thus that the
system may be written as(

Kk BT
)

B) 0

)(
v)
w)

)
= −

(
h)
d)

)
, (3.4)

for the appropriately repartitioned data

B) =
(
AA 0 0
0 0 I

)
, v) =

(
s)
tC
tD

)
and w) =

(
tA
u)

)
,
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and solution

h) =
(
g)
cC
0

)
and d) =

(
cA
0

)
.

Thus (3.4) can be solved in the standard way using the factors ofKk and those of the Schur complement
Sl = −BlK−1

k BT
) . Crucially, the factors ofS) may be updated rather than recomputed every time a

constituent is added to or removed from the working set. It is usual to store the growing matrixS) and
its factors as dense matrices; as a consequence each major iteration is concluded when the dimension of
S) exceeds a given upper limit (default, 75), or perhaps when the cost of continuing to enlarge the Schur
complement method is believed to exceed that of re-factorizingK).

This method was first suggested by Bisschop and Meeraus [5], and championed by Gill et al. [23,24]).
We have implemented such a method as part of the packageMA39 in HSL—the package is actually
designed to handle updates in the unsymmetric case, but is capable of exploiting both symmetry and
evena priori knowledge thatS) is definite. In principle, a symmetric indefinite factorization ofS) is both
possible, and possible to update. However, the details are complicated (see [39]), and we have chosen
instead to use a nonsymmetric (QR) factorization since updates are then relatively straightforward.

It is important to be able to check the inertia ofK) at every iteration, but fortunately this can be
achieved knowing those ofKk andS) using Sylvester’s law. Specifically, a very minor modification of
Gill et al. [24, Lemma 7.2] shows that so long as bothKk andK) are standard,

In(S))= (σ−, σ+,0), (3.5)

whereσ+ constituents have been added since the start of the major iteration, andσ− have been deleted.
Since we require thatKk is standard, it follows that if, at any stage, the inertia ofS) does not agree
with (3.5), it must be becauseK) is nonstandard. It is easy to check this condition since the inertia of
S) may be recurred as its factors are updated (in our case, since we are using the nonsymmetric QR
factors, we record the determinantsS) on subsequent iterations—a change in sign indicates an extra
negative eigenvalue, while a repeated sign indicates an extra positive one—directly from the products of
those ofQ andR. We ensure by construction that det(Q) = 1, while the eigenvalues ofR are merely
its diagonal entries.) We now consider the implication of adding and deleting constituents for the inertia
of K).

3.1. Adding a constituent

If K) is standard, and we add a constituent to the working set,K)+1 is also standard. This follows
immediately, since as we have already saidK) being standard is equivalent toNT

) MkN) being positive
definite, where the columns ofN) form am orthonormal basis for the null-space of the full-rank matrix
A), the fact that

N) =
(
N)+1

nT

)
Q

for some vectorn and orthonormal matrixQ (see [22]), and the observation thatNT
)+1MkN)+1 is then a

principal submatrix of the positive definite matrixQTNT
) MkN)Q and hence is itself positive definite.
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3.2. Deleting a constituent

Complications arise when we delete a constituent, since then it does not automatically follow that
K)+1 is standard even ifK) was. Fortunately, provided we are prepared to modifyMk when necessary,
we can avoid this potential defect.

Suppose the columns ofN form an orthonormal basis for the null-space of the full-rank matrixA, i.e.,
AN = 0. Suppose furthermore thatNTMN is positive definite. Let

A=
( �A
aT

)
in which case

�AN = 0 and aTN = 0. (3.6)

Then there is a vectorn for which the columns of(N n) form an orthonormal basis for the null-space
of �A, i.e.,

�AN = 0, NTn= 0 and �An= 0. (3.7)

Now consider the matrixM + δaaT for some scalarδ. Then(
NT

n

)(
M + δaaT )(N n)=

(
NTMN NTMn

nTMN 〈n,Mn〉 + δ〈a,n〉2

)
, (3.8)

where we have used the fact thatNTa = 0 from (3.6). Since the columns of(AT N) form a basis for
R
n, we may write

n= �A Tw+ αa+Nv

for some vectors finitew andv and scalarα. Premultiplying bynT, and using (3.7) and the orthonormality
of (N n) yields that 1= α〈a,n〉, from which we deduce that〈a,n〉 �= 0. Thus we can ensure that the
matrix (3.8) is positive definite by, if necessary, pickingδ sufficiently large.

Of course, we are not basing our method on (3.8), but rather on being able to solve augmented systems
like (3.3). In order to accommodate changes toMk of the type suggested above, we actually need to solve
systems of the form


Mk AT

C AT
D AT

A 0
AC 0 0 0 0
AD 0 0 0 I

AA 0 0 0 0
0 0 I 0 DD





s)
tC
tD
tA
u)


= −



g)
cC
0
cA
0


 , (3.9)

whereDD is a diagonal matrix. To see why this is appropriate, on eliminatingtD andu) and using (3.2),
we obtain(

Mk +AT
DDDAD AT

)

A) 0

)(
s)
t)

)
= −

(
g)
c)

)
, (3.10)

which is (3.1) with

M) =Mk +AT
DDDAD.
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A diagonal entry inDD need only be nonzero if the resultingK) would otherwise be nonstandard.
Crucially, as before, the leading 3 by 3 block of (3.9) is simplyKk , and thus that the system may be
written as(

Kk BT
)

B) D)

)(
v)
w)

)
= −

(
h)
d)

)
, (3.11)

where

D) =
(

0 0
0 DD

)
.

Thus (3.11) can be solved in the standard way using the factors ofKk and those of the Schur complement
Sl =D) −BlK

−1
k BT

) , and the factors of the latter can be updated as the working set changes.
To see this, suppose (without loss of generality) that we have added constituent gradients whose

Jacobian isAA, and now intend to remove the first row fromAD. The resulting Schur complement is
then

S(δ) =
(

0 0
0 δ

)
−
( −BK−1BT −BK−1b

−bTK−1BT −bTK−1b

)
=
(
QR v

vT δ+ β

)

=
(
Q 0
0 1

)
H TH

(
R w

vT δ+ β

)
= �Q�R(δ),

where

B = (AA 0 0) , bT = (0 0 1) ,

QR = −BK−1BT, v = −BK−1b, β = −bTK−1b and w =QTv,

and the orthonormal matrix

H = (�H h
)

is a product of plane rotations chosen to eliminate the spikevT. But then

�R(δ)=H

(
R w

vT δ+ β

)
= (�HR+ hvT �Hw+ βh

)+ δ(0 h)= �R(0)+ δ(0 h)

and the introduction ofδ simply addsδh to the last row of the updated upper triangular factor�R(0).
Fortunately, the updated orthonormal matrix is

�Q=
(
Q 0
0 1

)
H T =

(
Q�H T

hT

)
,

and henceh is available. We can evaluate the sign of the determinant of�R(0), and if this indicates that
the newK is nonstandard, add a sufficiently largeδ to change the sign of the last diagonal of�R(0)—we
use the value

δ = −ξ
ζ

+ max(−ξ,0.01)

ζ
,

whereξ denotes the last diagonal of�R(0) andζ is the last entry ofh, to ensure that the modified diagonal
is “suitably” nonzero.
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3.3. Deleting a nonreference constituent which has previously been added

One case of interest is when a constituent, not contained in the reference set but added to the working
set on a subsequent iteration, is now asked to leave. The obvious approach is to proceed exactly as in
Section 3.2 by adding an appropriate extra row/column to the Schur complementSl+1 (perhaps including
a nonzero diagonal termδ if this is needed to ensure thatKl+1 is standard). An alternative is to “undo”
the previous addition by removing the row and column fromS) corresponding to the outgoing constituent
row ( aT

A 0 0 0 0). However complications arise if we intend, once again, to ensure thatKl+1 is
standard by adding a (possible nonzero) multiple,δ, of aAaT

A toMl .
To see this, and to see how to avoid any difficulty, consider the analog of (3.9),


Mk AT
C AT

D AT
N0

AT
N AT

A 0 0 0
AC 0 0 0 0 0 0 0 0
AD 0 0 0 0 0 I 0 0
AN0 0 0 0 0 0 0 I 0
AN 0 0 0 0 0 0 0 I

AA 0 0 0 0 0 0 0 0
0 0 I 0 0 0 DD 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 DN







s)
tC
tD
tN0

tN
tA
u)
v)
w)




= −




g)
cC
0
0
0
cA
0
0
0



, (3.12)

whereDD and DN ( �= 0) are diagonal matrices, and where the rowsAN and AN0 correspond to
nonreference constituents that are added at some stage but subsequently removed—the subscriptsN and
N0 indicate those constituents for which modifications are, and are not, needed on removal, respectively.
Since our intention is to avoid the introduction of the last two block rows and columns of the coefficient
matrix in (3.12), eliminating the variablesv) andw) (and implicitly tN0) leads to



Mk AT
C AT

D AT
N AT

A 0
AC 0 0 0 0 0
AD 0 0 0 0 I

AN 0 0 −D−1
N 0 0

AA 0 0 0 0 0
0 0 I 0 0 DD







s)
tC
tD
tN
tA
u)


= −




g)
cC
0
0
cA
0


 , (3.13)

which is exactly of the form (3.11) with data

B) =
(
AN 0 0
AA 0 0
0 0 I

)
, D) =

(−D−1
N 0 0

0 0 0
0 0 DD

)
, v) =

(
s)
tC
tD

)
and w) =

(
tN
tA
u)

)
,

and solution

h) =
(
g)
cC
0

)
and d) =

( 0
cA
0

)
.

Notice that the essential difference between this case and its predecessor is that the extra diagonal terms
−D−1

N will appear in the Schur complementS) whenever removing a nonreference constituent might
otherwise lead to a nonstandardK). We now consider how this manifests itself.
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Suppose that at iteration), a nonreference constituent is to be deleted. We might then try to remove
its corresponding row and column from thep by p Schur complementS) to obtainS)+1. Furthermore,
suppose (without loss of generality) that it is the last row and column ofS) that is to be removed, that

S) =QR (3.14)

for some upper triangularR and orthonormalQ—if not, standard orthogonal matrix techniques (see, for
example, [22]) may be used to reorder the rows and columns ofS), and recover the required form of the
factors, so that this is so—and that the sign of the determinant ofS) is known. Given (3.14), we now
choose the orthogonal matrixH , a product of plane rotations (thej th of which involves columnsp − j

andp, for j = 1, . . . , p− 1) so that

QH =
( �Q 0

0 1

)
and H TR =

( �R r

lT ρ

)
,

for new upper triangular�R and orthonormal�Q. Then it is safe to useS)+1 = �S, where

�S = �Q�R, (3.15)

so long as the sign of the determinant of�S is the opposite of that ofS) (this follows from the inertial
result (3.5))—in practice, we ensure that det(Q) = 1 for all orthonormalQ, so that sign of det(S)+1)

is the product of the signs of the diagonal entries of�R. Conversely, if the signs are the same, of if�R
is singular, this indicates that it is not safe to remove the row/column fromS), and instead we need to
introduce an extra diagonal term (cf.,−D−1

N in (3.13)) intoS) so as to change its inertia.
At face value, this might look rather expensive, since we might have to “undo” the transformation

usingH if (3.15) turns out to be unsatisfactory. Fortunately, it is not actually necessary to applyH to
Q or R in order to find the diagonals of�R. All that is needed is (1) to compute the plane rotations to
reduce last row ofQ to eT

p (in temporary store), and (2) to apply these rotations to the diagonal entries of
R (again in temporary store).

3.4. Adding a constituent which has previously been deleted

Another case of interest is when a constituent which is in the reference set, but which has been
deleted from the working set at iterationj , now wishes to re-enter the working set. According to
Section 3.1, the simplest mechanism would then be to introduce the constituent’s gradient as the new
last row ofK)+1, and we can be assured that the resultingK)+1 is standard. An alternative is to “undo”
the previous deletion by removing the row and column fromS) corresponding to one of the artificial
rows(0 0 I 0 0) which is added toKj to effect the deletion (see Eq. (3.3)). However, the reader
may then be concerned that, according to (3.9), the original deletion may have actually required that we
add a row of(0 0 I 0 DD ) for nonzeroDD rather than(0 0 I 0 0) so as to ensure that
the resultingKj+1 was standard. If we delete this row fromK), can we be sure that resultingK)+1 is
standard? To see that this is indeed the case, note that if we reintroduce the rowaT

D of AD, we must have
that (

Mk +AT
DDDAD AT

) aD
A) 0 0
aT
D 0 0

)
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is standard because of our discussion in Section 3.1. Since this is equivalent to saying that〈
s,
(
Mk +AT

DDDAD

)
s
〉
> 0

for all s for which(
A)

aT
D

)
s = 0,

we then have that

0<
〈
s,
(
Mk +AT

DDDAD

)
s
〉= 〈

s,
(
Mk + �A T

D
�DD

�AD + δaDa
T
D

)
s
〉= 〈

s,
(
Mk + �A T

D
�DD

�AD

)
s
〉

whereδ is the diagonal ofDD corresponding to the rowaT
D, and where�DD and �AD are the remaining

rows ofDD andAD respectively. Thus(
Mk + �A T

D
�DD

�AD AT
) aD

A) 0 0
aT
D 0 0

)

is standard, and thus removing the row(0 0 1 0 δ ) has the desired effect.

4. Other details

As Roger Fletcher (U. Dundee) has cautioned us on a number of occasions, computational quadratic
programming is all about seemingly insignificant, but, in practice, absolutely vital details. In this section
we describe these details for our Fortran 90 packageQPA (from the forthcomingGALAHAD opt-
imization library) that implements the basic algorithm outlined in this paper. An enhanced version of
QPA, HSL_VE19, in whichQPA’s core linear algebra packageMA27 is replaced by its more powerful
successorMA57 (see [14]), will be available in the next release of HSL [36].

4.1. Constituent deletion strategies

Among the many strategies for removing constituents that have been suggested, our default is to
pick the constituent whose Lagrange multiplier is furthest from the interval[0,1]—ties are resolved
by selecting the one with smallest index. Another strategy that is available as an option is to remove the
last constituent that was added to the working set for which[yk]i /∈ [0,1], since this gives priority to
those nonreference constituents whose removal from the Schur complement is cheapest to effect. A third
option is a variation on both these themes in which the lastk constituents (for some user-givenk) in
the working set for which[yk]i /∈ [0,1] are candidates, and the one whose Lagrange multiplier is furthest
from the interval[0,1] is selected. Again, this gives some precedence to constituents whose removal may
be effected most cheaply.

4.2. Simple bounds

As we mentioned in the introduction, problems frequently involve “simple bounds” of the form
ρb(min(0, xi − li)+ max(0, xi − ui)). Although these might be exploited at various stages of the linear
algebra (most particularly when updating the Schur complements as simple bound constituents enter and
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leave the working set) we have contented ourselves to exploit them only at the start of a major iteration.
Specifically, since each system to be solved throughout the progress of the major iteration involves one
or more solutions of the reference system(

Mk AT
k

Ak 0

)(
s

t

)
=
(
g

c

)
(4.1)

for suitableg andc, it pays to exploit the structure of this system. So suppose (by implicitly reordering
if necessary) that

Ak =
(
AFX
k AFR

k

I 0

)
and Mk =

(
MFX

k MOD T
k

MOD
k MFR

k

)
as well as

s =
(
sFX

sFR

)
, t =

(
tGC

tSB

)
, g =

(
gFX

gFR

)
and c=

(
cGC

cSB

)
.

Then clearly (4.1) may be written as

MFX

k MOD T
k AFX T

k I

MOD
k MFR

k AFR T
k 0

AFX
k AFR

k 0 0
I 0 0 0





sFX

sFR

tGC

tSB


=



gFX

gFR

cGC

cSB


 ,

from which we may deduce that

sFX = gFX, (4.2)(
MFR

k AFR T
k

AFR
k 0

)(
sFR

tGC

)
=
(
hFR

dGC

)
def=
(
gFR −MOD

k gFX

cGC −AFX
k gFX

)
, and (4.3)

tSB = cSB −MFX
k sFX −MOD T

k sFR −AFX T
k tGC. (4.4)

Thus rather than obtain factors ofKk , we need only find those of

KFR
k =

(
MFR

k AFR T
k

AFR
k 0

)
and solve (4.1) via (4.2)–(4.4).

4.3. Solving the reduced reference system

Thereducedreference system (4.3) may most obviously be solved using a direct factorization ofKFR
k .

However, ifMFR
k is nonsingular and diagonal, it is often more efficient to find

sFR = −MFR−1
k

(
hFR −AFX T

k tGC
)
, where

AFR
k MFR−1

k AFR T
k tGC =AFR

k MFR−1
k hFR − dGC

(4.5)

using the factors ofAFR
k MFR−1

k AFR T
k , particularly whenAFR

k has few nonzeros per column. Our default
strategy is to use the alternative (4.5) wheneverMFR

k is both diagonal and positive definite andAFR
k has

less than a user-supplied number (default, 35) nonzeros per column.
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Whichever approach is attempted, the HSL solverMA27 (see [15]) is used to factorize the relevant
matrix and solve related systems. Perhaps unusually, a very small threshold tolerance is used (default,
0.1

√
εM ), since, in our experience, this almost always results in far sparser factors, without any

perceivable loss in accuracy, than withMA27s default. As a precaution, the residuals of linear systems
are periodically monitored, and any noticeable inaccuracies are handled by one or more steps of iterative
refinement or, as a last resort, re-factorization with an increased pivot tolerance.

4.4. Preconditioners

Of course the choice of preconditionerMk is vital. We provide a number of choices forMk . The three
“obvious” options, ranging in sophistication (and effectiveness), are to pickMk to beH or I or a matrix
made up of entries ofH lying within a band of user-specified semi-bandwidth (default, 5). In addition,
since we aim to use (4.2)–(4.4) rather than (4.1), we may sometimes prefer to setMFX

k andMOD
k to zero.

In all cases (except whenMk = I ), we have to be careful thatKk is standard. Thus, if the givenMFR
k

is not second-order sufficient (this information is available after the attempted factorization ofKk), we
use the simple expedient of adding‖MFR

k ‖1I to MFR
k , and re-factorizing. We accept that this is a rather

simplistic strategy—indeed, we only really need to boostMFR
k in the null-space ofAFR

k —but it appears
to be effective in practice. Dynamic alternatives, in which the factorization may be modified as it is
computed in order to ensure that the resultantMFR

k is second-order sufficient have been proposed (see,
for example, [20,21,27]), but, in our experience, at least the latter of these appears to perform no better
than the simplistic strategy above.

The default preconditioner is chosen automatically, at the start of each major iteration, from the above,
using the following heuristic. Firstly, an attempt to useMk =H is made, but this is abandoned, unlessHk

is itself diagonal, if the number of nonzeros in the factors ofKk exceeds a given multiple (default, 10) of
those in theKk itself. Next, if this failure occurs, the banded approximation described above is attempted.
If the banded approximation fails because there is insufficient room, the required semi-bandwidth is set
to zero, and a diagonal approximation attempted. Finally, if all of the preceding fail, the identity matrix
is chosen. Although this might appearad hoc, such an automatic strategy has worked reasonably well in
practice.

4.5. The search direction and anti-zigzagging

Our current anti-zigzagging procedure is extremely crude. The initial approximation to the solution
of the search-direction problem (2.1) is a low-accuracy solution based on a few (often simply one)
iterations of the GLTR method mentioned in Section 2.1. If this solution is not optimal for (2.1), and if the
active set has not changed in the interim, a far more accurate solution of (2.1) is sought, typically only
terminating when the “residual”〈gj,k, vj,k〉 � max(εR · 〈g0,k, v0,k〉, εA) for some user-supplied relative
and absolute convergence tolerancesεR (default, zero) andεA (default,

√
εM ). We plan to investigate

more sophisticated schemes in due course.

4.6. Linear independence

The whole algorithm is predicated on the constituents in the working set having linearly independent
gradients. This may fail in practice for two reasons. Firstly, the initial working set provided may have
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dependent constituent gradients. Secondly, barely independent constituents may be picked up as the
algorithm proceeds. We thus find it periodically necessary to try to identify (and consequently) remove
such rogue constituents. Our strategy is simply to factorize(

I AFR T
k

AFR
k 0

)
(which may or may not be reused later as the preconditioner), usingMA27, with a large threshold
tolerance (default, 0.5), and to use relatively small diagonal entries in its block diagonal factor to predict
dependent constituents—any eigenvalue of this factor smaller than a fixed factor (default,ε0.75) of the
largest in absolute value is considered dependent. We apply this “pruning” strategy at the start of the
algorithm, and at the start of each major iteration for which there is some suspicion that the previous one
might have introduced “close to dependent” terms—this is usually apparent when factors of the Schur
complementSk become ill-conditioned.

While our strategy is not foolproof, and, admittedly, may be expensive, we believe that it is a prudent
precaution that has proved most worthwhile in practice. Of course, more sophisticated strategies (such as
those involving the singular value decomposition or a rank-revealing factorization) are more reliable, but
they are almost always too expensive for the size of our application.

4.7. Feasibility tolerance

In practice, constituents are considered active if|〈ai, x〉 − bi | � εa , for some user-supplied tolerance
εa > 0 (default,ε.75

M , whereεM is the relative machine precision).

4.8. Handling degeneracy

While there are many possible anti-cycling rules (see, for example, [10, Chapter 3]), we have chosen
to avoid the issue altogether by randomly perturbing the datab before starting to solve the problem.
Once optimality is achieved, the perturbations are gradually reduced and the problem resolved, until the
perturbations have effectively vanished. Specifically, positive initial random perturbations in the range
(0,

√
εM ·max(1,‖b‖)] are added tob; on termination, they are reduced by a factor 0.1·min(1, εa/

√
εM ),

and the problem resolved, until they are smaller than 10εM .

4.9. Cold and warm starts

Options are provided for the user to specify which constituents are to be initially in the working set
(usually known as a warm start), or for the initial point itself to be given, or for cold starts with initial
working sets made up with either no active constituents, or as many active constituents as possible,
or only “equality” constituents. The gradients of the active constituents at the initial point are always
checked for independence, and some dependent constituents may be removed from the initial working
set.

4.10. The penalty parameter

When solving QPs, the initial penalty parameterρ is supplied by the user (default, 10). If the
constraints are violated at the solution to (1.1), or iff (x) has been diagnosed as being unbounded from
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below,ρ is increased by a factor of user-supplied factor (default, two), and (1.1) resolved. In addition,
ρ is increased by the same factor whenever the relative infeasibility fails to decrease by at least a given
factor (default, 0.75) over a prescribed period (default, 100) of iterations. While this strategy is rather
naive, it has worked satisfactorily. We also note that, although finding a good value ofρ can help reduce
the number of iterations performed, it does not seem to be as critical for reliability as we had been lead
to expect.

As we suggested in Section 1, it is often sensible to provide separate penalty parameters for different
terms. In our implementation, we allow one penalty parameterρg for “general” (i.e., not simple bound)
linear constraints, and a second,ρb, for the simple bounds (both, by default, initially 10). In addition,
the two parameters are adjusted independently when solving QPs, using the strategy described above but
where now infeasibilities with respect to general constraints and simple bounds are measured separately.
In particular, this also allows us to solve problems of the form

minimize
x∈Rn

f (x)+ ρg
∑
i

(
min

(
0, 〈ai, x〉 − cli

)+ max
(
0, 〈ai , x〉 − cui

))
(4.6)

subject to the simple bounds

xl � x � xu (4.7)

by suitably adjusting the penalty parameterρb corresponding to additional penalty terms

ρb
∑
j

(
min

(
0, xj − xlj

)+ max
(
0, xj − xuj

))
.

Subproblems of the form (4.6)–(4.7) arise when using Fletcher’s [18, Section 14.4] Sl1QP method with
an)∞-norm trust region.

5. Numerical results

Preliminary numerical results obtained using the method described here are given in a companion
paper [30], in which our present proposal is compared with a competing primal-dual interior-point trust-
region approach (QPB in GALAHAD, orHSL_VE12 in HSL [35], see [12]). For brevity, we do not propose
to repeat these here, but direct the reader to Gould and Toint [30] for details. Moreover, sinceQPA will
eventually incorporate our quadratic programming preprocessing procedures (see [31]), we feel it is wise
to report on the complete code when it is ultimately released.

We should stress that the conclusions drawn in Gould and Toint [30] are not particularly favorable
for our working-set approach, since it is comprehensively outperformed for large-scale cold-started
applications by its interior-point rival. Even when a good prediction of the optimal working set is
available (a warm start), the working-set method described here does not always beat the interior-point
approach, simply because the latter requires so few iterations, while the former can easily be fooled by
just one incorrect assignment to the working set and most especially by degeneracy. Having said this, for
small problems, and in some warm-started cases, the working-set approach does appear to perform better
than its rival, and thus our contention that it is advantageous to have both methods available appears still
to be valid.
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6. Conclusions

We have presented a working-set based quadratic programming method capable of finding (at least)
first-order critical points in the nonconvex case. The method is designed to solve large-scale problems,
and uses a suitably-preconditioned conjugate-gradient iteration at its heart. Methods for updating the
preconditioner, while maintaining crucial inertial properties are described, and a large number of
implementational details are provided. The method has been implemented, and versions will shortly
be available as part of both theGALAHAD and HSL [36] suites of software packages.
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