1(a). Given an estimate x, of a local minimizer of f(x), a linesearch method (i) com-
putes a search direction s, which must also be a descent direction (i.e., si V. f () <
0) [1 mark], and (ii) computes a stepsize oy so that f(zy + agsg) is “sufficiently”
smaller than f(xzy) (using for instance a backtracking Armijo rule) [1 mark]. The
next iterate is Tx11 = x + oSy [2 marks].

By contrast, a trust region method computes a trial step s, to approximately
minimize a model approximation my(zy + s) of f(zy + s) where the step is required
to satisfy the trust-region constraint ||s|| < Ay for some Ay > 0 [1 mark]. If the actual
decrease f(xy)— f(xr+sk) is close to that predicted by the model, m(zy) —m(zg+sk),
the next iterate is zx1 = xx + Sk, and Agyq > Ay [1 mark]. If the actual decrease
is significantly worse than that predicted, xx,1 = x, and the new radius Ay < Ag
[1 mark]. The approximate minimizer of the model is required to be at least as good
as the Cauchy point [1 mark].

1(b). There exist Lagrange multipliers y, for which z, is primal feasible, i.e.,
c(zs) 20, [ mark]

dual feasible i.e.,
Vof(z,) — (Ve(x,) 'y, =0 and y, >0,  [L mark]

and satisfies the complementary slackness condition

¢i(z4)(y«); = 0 for each constraint. [1 mark]

1(c). The gradient of the objective function is g + Bz, while the gradient of the
constraint c¢(z) = 1A% — 17z > 0 is —xz [1 mark]. Thus the dual feasibility equation
in 1(b) above gives that
g+ Bz —(—z,)X\ =0 and A\, >0
i.e., that
(B+ A1)z, =—g and A\, >0. [l mark]

The complementary slackness condition is that
(1A% — 12Tz )N\, =0 [1 mark]

so that either \, = 0 [1 mark] or 1A% — 17Tz, = 0 [1 mark]; the second possibility is
equivalent to ||z = A.

1(d). The unconstrained minimizer (—1,0,—1/2) has an fy-norm of /5/2 > 5/12
[1 mark], so the solution must lie on the boundary of the constraint [1 mark]. The



solution must be of the form —(1/(1 + A),0,1/(2 + A))” [1 mark]. To satisfy the
trust-region constraint, we then must have

1 1 , 25
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which has a root A = 2 [1 mark]. Thus the required solution is —(1/3,0,1/4)T[1
mark].



2(a). The first-order optimality conditions are that z; > 0 (primal feasibility) [

mark],
(2 )=o(d)=0

and y > 0 (dual feasibility) [1 mark], and y - ;1 = 0 (complementary slackness) [1
mark]. Dual feasibility says that y = 1 and zo = 0, from which we deduce that
x1 = 0 from complementary slackness [1 mark]. Second-order optimality conditions

are simply that
0 0 s
832(81,82)’1—‘(0 1)(8;)20

for all s # 0 for which s; = 0 which are automatically satisfied [1 mark]. Thus the
solution is z = (0,0) with Lagrange multiplier y = 1 [1 mark].
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2(b). The logarithmic barrier function is
®(x,p) = 21 + t25 — plogz;. [l mark]

The first-order optimality conditions for the unconstrained minimization of ® are

that .
1 Ty .
(@)—u( 0 >—0. [1 mark]

If we let z(p) be the desired minimizer, the optimality conditions indicate that x(u) =
(i,0) [1 mark], while the Lagrange multiplier estimates are y(u) = c(z(u))/p=1[1
mark]. The Hessian is positive definite [1 mark].

2(c). The Hessian matrix of the logarithmic barrier function is

2
(’Mi)l (1)>, [1 mark]

at the minimizer of ®(z, i), the Hessian is

( “(;1 ; ) . [l mark]

The eigenvalues are 1 and p~! [1 mark]. As u goes to zero, one eigenvalue diverges
to infinity, while the other one stays fixed at 1 [I mark]. While this means that
the condition number approaches infinity (and thus there may be large numerical
errors), the growth does not actually happen, since the Newton equations may be
reformulated as a well-conditioned system [1 mark].

2(d). The primal-dual system at x(p) is

(29 () [() ()] e

Thus s, = 0, while s; = —p + & [2 marks]. In particular z(u) + s = & = x(f), the
minimizer of ®(z, i) [1 mark]



