
1(a). Given an estimate xk of a local minimizer of f(x), a linesearch method (i) com-
putes a search direction sk, which must also be a descent direction (i.e., sT

k
∇xf(xk) <

0), [1 mark], and (ii) computes a stepsize αk so that f(xk + αksk) is “sufficiently”
smaller than f(xk) (using for instance a backtracking Armijo rule). [1 mark]. The
next iterate is xk+1 = xk + αksk. [1 mark].

The Armijo condition is that the stepsize αk must satisfy

f(xk + αkpk) ≤ f(xk) + βαkp
T

k
∇xf(xk)

for some β ∈ (0, 1). [2 marks]. It is important as it stops the stepsize from becoming
too long relative to the expected decrease in f . [1 mark].

Let N = {0, 1, 2, . . .}. Given an initial “guess” at the stepsize αinit and a sequence
of decreasing stepsizes {αinitτ

i}i∈N for some τ ∈ (0, 1), a backtracking-Armijo line-
search sets αk = αinitτ

l where l is the smallest member N for which

f(xk + α(l)pk) ≤ f(xk) + βα(l)pT

k
∇xf(xk). [2 marks]

1(b). The steepest-descent direction is the vector pk = −∇xf(xk). [1 mark]. The
Newton direction is a solution pk to the system

∇xxf(xk)pk = −∇xf(xk)

if a solution exists. [1 mark].
Advantages of steepest descent direction [1 mark for at least one of]:

(i) it is cheap (only requires first derivatives),
(ii) it is the archetypical globally convergent method, and
(iii) many other methods resort to steepest descent in bad cases.

Disadvantages of steepest descent direction [1 mark for at least one of]:
(i) it is not scale invariant,
(ii) convergence is usually very (very!) slow (linear), and
(iii) numerically it is often not convergent at all.

Advantages of the Newton direction [1 mark for at least one of]:
(i) it is scale invariant, and
(ii) the iterates usually converge fast (quadratically)

Disadvantages of the Newton direction [1 mark for at least one of]:
(i) it may fail if the Hessian is singular,
(ii) it may give an ascent direction if the Hessian is indefinite
(iii) it is expensive (requires second derivatives and matrix factorization)

1(c). At x = ( 1

2
, 1), the gradient and Hessian are

∇xf(x) =

(

4x3
1 − 4x1

2x2

)

=

(

− 3

2

2

)



and

∇xxf(x) =

(

12x2
1 − 4 0
0 2

)

=

(

−1 0
0 2

)

[1 mark]

Since the product of the Newton direction

(

− 3

2

−1

)

with the gradient is 1

4
> 0, the Newton direction is not a descent direction. [1 mark]

To modify the Newton direction, replace the Newton system by

(∇xxf(xk) + Mk)pk = −∇xf(xk) [1 mark]

where Mk is chosen so that ∇xxf(xk) + Mk is “sufficiently” positive definite and
Mk = 0 when ∇xxf(xk) is itself “sufficiently” positive definite. [1 mark].

There are various ways of doing this. For example, (i) if ∇xxf(xk) has the spec-
tral decomposition ∇xxf(xk) = Q

k
D

k
QT

k
, where Qk is an orthonormal matrix of

eigenvectors, and Dk a diagonal matrix of eigenvalues, then pick

∇xxf(xk) + Mk = Q
k
max(ε, |D

k
|)QT

k

for some small ε > 0. Alternatively (ii) one could pick Mk = max(0,−λmin(∇xxf(xk)))I
where λmin(∇xxf(xk) is the smallest eigenvalue of ∇xxf(xk), or (iii) use a modified
Cholesky factorization. [2 marks, for any of these]. So in our case

(∇xxf(xk) + Mk) =

(

ε 0
0 2

)

from which the modified Newton direction
(

− 3
2ε

−1

)

is a descent direction [2 marks].



2(a) First-order optimality conditions are that there exist Lagrange multipliers y∗ for
which x∗ is primal feasible, i.e.,

c(x∗) ≥ 0, [1 mark]

dual feasible i.e.,

∇xf(x∗) − (∇c(x∗))
T y∗ = 0 and y∗ ≥ 0, [1 mark]

and satisfies the complementary slackness condition

ci(x∗)(y∗)i = 0 for each constraint. [1 mark]

2(b). The logarithmic barrier function is

Φ(x, µ) = f(x) − µ
m
∑

i=1

log ci(x) [1 mark]

Its gradient is
∇xf(x) − (∇c(x))T y(x)

where yi(x) = µ/ci(x). [1 mark].

2(c). Let x(µ) be a local minimizer of the logarithmic barrier function, and suppose
that x(µ) has a limit point x∗.

Assumptions required: f and c are twice-continuously differentiable, and that
{∇ci(x∗)}i∈A are linearly independent, where A = {i|ci(x∗) = 0}. [1 mark].

In this case

∇xf(x(µ)) − (∇c(x(µ)))Ty(x(µ)) = 0 [1 mark]

Need linear independence to ensure that y(x(µ) converges to some y∗,[1 mark], and
hence that

∇xf(x∗) − (∇c(x∗))
T y∗) = 0 [1 mark]

Since c(x(µ) > 0 and y(x(µ)) > 0, c(x∗) ≥ 0 and y∗ ≥ 0 [1 mark]. Finally, by
definition

ci(x(µ))yi(x(µ)) = µ

and hence ci(x∗)(y∗)i = 0 for all i [1 mark]. Thus the conditions of part (a) are
satisfied.

The values yi(x) = µ/ci(x) thus give Lagrange multiplier estimates when x → x(µ)
and µ → 0. [1 mark]

2(d) The dual feasibility condition is that
(

x1

1

)

−

(

0
1

)

y1 = 0 [1 mark]



from which we deduce that y1 = 1 and x1 = 0. Since the Lagrange multiplier is
positive, the constraint is active, and hence x2 = 0. [1 mark].

2(e) The gradient and Hessian of the barrier function

∇xΦ(x, µ) =

(

x1

1 − µ/x2

)

and ∇xxΦ(x, µ) =

(

1 0
0 µ/x2

2

)

[1 mark]

For points on the solution trajectory x(µ) = (0, 1/µ), this is

(

1 0
0 1/µ

)

Since the condition number of the Hessian is 1/µ, the Hessian becomes increasingly
ill-conditioned as µ → 0, a naive interpretation of Newton’s method might suggest
that inaccurate Newton corrections may be impossible. [2 marks].

2(f) The Newton equations are

(

1 0
0 µ/x2

2

)(

s1

s2

)

= −

(

x1

1 − µ/x2

)

and hence
(

s1

s2

)

=

(

−x1

−(x2/µ)(x2 − µ)

)

.

Close to the solution trajectory x2/µ is close to 1, and thus both components of d
are small. Thus the ill-conditioning does not hurt. [3 marks].


